Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1988 May;54(5):1203–1209. doi: 10.1128/aem.54.5.1203-1209.1988

Extremely Thermophilic Fermentative Archaebacteria of the Genus Desulfurococcus from Deep-Sea Hydrothermal Vents

Holger W Jannasch 1,*, Carl O Wirsen 1, Stephen J Molyneaux 1, Thomas A Langworthy 1
PMCID: PMC202627  PMID: 16347631

Abstract

Two strains of extremely thermophilic, anaerobic bacteria are described that are representative of isolates obtained from a variety of oceanic hydrothermal vent sites at depths from 2,000 to 3,700 m. The isolates were similar in their requirements for complex organic media, elemental sulfur, and seawater-range salinities (optimum, 2.1 to 2.4%); their high tolerance for sulfide (100 mM) and oxic conditions below growth-range temperatures (50 to 95°C); and their archaebacterial characteristics: absence of murein, presence of certain diand tetraethers, and response to specific antibiotics. The two strains (S and SY, respectively) differed slightly in their optimum growth temperatures (85 and 90°C, optimum pHs for growth (7.5 and 7.0), and DNA base compositions (52.01 and 52.42 G+C mol%). At their in situ pressure of about 250 atm (25,313 kPa), growth rates at 80 and 90°C were about 40% lower than those at 1 atm (101.29 kPa), and no growth occurred at 100 and 110°C, respectively, at either pressure. In yeast extract medium, only 2% of the organic carbon was used and appeared to stem largely from the proteinaceous constituents. According to physiological criteria, the isolates belong to the genus Desulfurococcus.

Full text

PDF
1203

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BLIGH E. G., DYER W. J. A rapid method of total lipid extraction and purification. Can J Biochem Physiol. 1959 Aug;37(8):911–917. doi: 10.1139/o59-099. [DOI] [PubMed] [Google Scholar]
  2. Belkin S., Wirsen C. O., Jannasch H. W. A new sulfur-reducing, extremely thermophilic eubacterium from a submarine thermal vent. Appl Environ Microbiol. 1986 Jun;51(6):1180–1185. doi: 10.1128/aem.51.6.1180-1185.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bott T. L., Brock T. D. Bacterial growth rates above 90 degrees C in Yellowstone hot springs. Science. 1969 Jun 20;164(3886):1411–1412. doi: 10.1126/science.164.3886.1411. [DOI] [PubMed] [Google Scholar]
  4. Fischer F., Zillig W., Stetter K. O., Schreiber G. Chemolithoautotrophic metabolism of anaerobic extremely thermophilic archaebacteria. Nature. 1983 Feb 10;301(5900):511–513. doi: 10.1038/301511a0. [DOI] [PubMed] [Google Scholar]
  5. Hatchikian E. C., Bruschi M., Forget N., Scandellari M. Electron transport components from methanogenic bacteria: the ferredoxin from Methanosarcina barkeri (strain Fusaro). Biochem Biophys Res Commun. 1982 Dec 31;109(4):1316–1323. doi: 10.1016/0006-291x(82)91921-0. [DOI] [PubMed] [Google Scholar]
  6. Kerscher L., Nowitzki S., Oesterhelt D. Thermoacidophilic archaebacteria contain bacterial-type ferredoxins acting as electron acceptors of 2-oxoacid:ferredoxin oxidoreductases. Eur J Biochem. 1982 Nov;128(1):223–230. doi: 10.1111/j.1432-1033.1982.tb06955.x. [DOI] [PubMed] [Google Scholar]
  7. Kerscher L., Oesterhelt D., Cammack R., Hall D. O. A new plant-type ferredoxin from halobacteria. Eur J Biochem. 1976 Dec;71(1):101–107. doi: 10.1111/j.1432-1033.1976.tb11094.x. [DOI] [PubMed] [Google Scholar]
  8. Pfennig N., Biebl H. Desulfuromonas acetoxidans gen. nov. and sp. nov., a new anaerobic, sulfur-reducing, acetate-oxidizing bacterium. Arch Microbiol. 1976 Oct 11;110(1):3–12. doi: 10.1007/BF00416962. [DOI] [PubMed] [Google Scholar]
  9. Ruby E. G., Wirsen C. O., Jannasch H. W. Chemolithotrophic sulfur-oxidizing bacteria from the galapagos rift hydrothermal vents. Appl Environ Microbiol. 1981 Aug;42(2):317–324. doi: 10.1128/aem.42.2.317-324.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Werber M. M., Mevarech M. Purification and characterization of a highly acidic 2Fe-ferredoxin from Halobacterium of the dead sea. Arch Biochem Biophys. 1978 Apr 30;187(2):447–456. doi: 10.1016/0003-9861(78)90056-5. [DOI] [PubMed] [Google Scholar]
  11. Wieringa K. T. Solid media with elemental sulphur for detection of sulphur-oxidizing microbes. Antonie Van Leeuwenhoek. 1966;32(2):183–186. doi: 10.1007/BF02097458. [DOI] [PubMed] [Google Scholar]
  12. Zillig W., Tu J., Holz I. Thermoproteales--a third order of thermoacidophilic archaebacteria. Nature. 1981 Sep 3;293(5827):85–86. doi: 10.1038/293085a0. [DOI] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES