Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1988 Jul;54(7):1791–1794. doi: 10.1128/aem.54.7.1791-1794.1988

Mechanism for nitrosation of 2,3-diaminonaphthalene by Escherichia coli: enzymatic production of NO followed by O2-dependent chemical nitrosation.

X B Ji 1, T C Hollocher 1
PMCID: PMC202747  PMID: 3046492

Abstract

The mechanism by which Escherichia coli can catalyze the nitrite-dependent nitrosation of 2,3-diaminonaphthalene (DAN), with formation of the corresponding fluorescent triazole, was studied. The reaction was dependent on production of a gaseous compound which can nitrosylate DAN upon contact with air. This compound was identified as nitric oxide (NO), and the kinetics of NO and triazole production are reported. NO and triazole were produced proportionally in a stoichiometric ratio, NO/triazole, of 1.4 to 1.7. Given the requirement for air, nitrosation of DAN probably proceeds via formation of the well-known strong nitrosylating agents N2O3 and N2O4 from NO. The parallel inhibition of NO and triazole production by azide and nitrate served to reinforce the link between nitrosation and nitrate reductase that had been established previously by others on genetic grounds.

Full text

PDF
1791

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adams M. W., Mortenson L. E. The effect of cyanide and ferricyanide on the activity of the dissimilatory nitrate reductase of Escherichia coli. J Biol Chem. 1982 Feb 25;257(4):1791–1799. [PubMed] [Google Scholar]
  2. Bazylinski D. A., Soohoo C. K., Hollocher T. C. Growth of Pseudomonas aeruginosa on nitrous oxide. Appl Environ Microbiol. 1986 Jun;51(6):1239–1246. doi: 10.1128/aem.51.6.1239-1246.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bleakley B. H., Tiedje J. M. Nitrous oxide production by organisms other than nitrifiers or denitrifiers. Appl Environ Microbiol. 1982 Dec;44(6):1342–1348. doi: 10.1128/aem.44.6.1342-1348.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Böckler R., Meyer H., Schlag P. An experimental study on bacterial colonization, nitrite and nitrosamine production in the operated stomach. J Cancer Res Clin Oncol. 1983;105(1):62–66. doi: 10.1007/BF00391833. [DOI] [PubMed] [Google Scholar]
  5. Calmels S., Ohshima H., Bartsch H. Nitrosamine formation by denitrifying and non-denitrifying bacteria: implication of nitrite reductase and nitrate reductase in nitrosation catalysis. J Gen Microbiol. 1988 Jan;134(1):221–226. doi: 10.1099/00221287-134-1-221. [DOI] [PubMed] [Google Scholar]
  6. Calmels S., Ohshima H., Rosenkranz H., McCoy E., Bartsch H. Biochemical studies on the catalysis of nitrosation by bacteria. Carcinogenesis. 1987 Aug;8(8):1085–1088. doi: 10.1093/carcin/8.8.1085. [DOI] [PubMed] [Google Scholar]
  7. Calmels S., Ohshima H., Vincent P., Gounot A. M., Bartsch H. Screening of microorganisms for nitrosation catalysis at pH 7 and kinetic studies on nitrosamine formation from secondary amines by E. coli strains. Carcinogenesis. 1985 Jun;6(6):911–915. doi: 10.1093/carcin/6.6.911. [DOI] [PubMed] [Google Scholar]
  8. Carlson C. A., Ferguson L. P., Ingraham J. L. Properties of dissimilatory nitrate reductase purified from the denitrifier Pseudomonas aeruginosa. J Bacteriol. 1982 Jul;151(1):162–171. doi: 10.1128/jb.151.1.162-171.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Forget P. Les nitrate-réductases bactériennes. Solubilisation, purification et propriétés de l'enzyme A de Micrococcus denitrificans. Eur J Biochem. 1971 Feb 1;18(3):442–450. doi: 10.1111/j.1432-1033.1971.tb01262.x. [DOI] [PubMed] [Google Scholar]
  10. Forget P. The bacterial nitrate reductases. Solubilization, purification and properties of the enzyme A of Escherichia coli K 12. Eur J Biochem. 1974 Mar 1;42(2):325–332. doi: 10.1111/j.1432-1033.1974.tb03343.x. [DOI] [PubMed] [Google Scholar]
  11. Garber E. A., Hollocher T. C. 15N,18O tracer studies on the activation of nitrite by denitrifying bacteria. Nitrite/water-oxygen exchange and nitrosation reactions as indicators of electrophilic catalysis. J Biol Chem. 1982 Jul 25;257(14):8091–8097. [PubMed] [Google Scholar]
  12. Goretski J., Hollocher T. C. Trapping of nitric oxide produced during denitrification by extracellular hemoglobin. J Biol Chem. 1988 Feb 15;263(5):2316–2323. [PubMed] [Google Scholar]
  13. Pichinoty F. Les nitrate-réductases bactériennes. 3. Propriétés de l'enzyme B. Bull Soc Chim Biol (Paris) 1969 Oct;51(5):875–890. [PubMed] [Google Scholar]
  14. Pichinoty F. Les nitrate-réductases bactériennes. I. Substrats, état particulaire et inhibiteurs de l'enzyme A. Arch Mikrobiol. 1969;68(1):51–64. [PubMed] [Google Scholar]
  15. Ralt D., Wishnok J. S., Fitts R., Tannenbaum S. R. Bacterial catalysis of nitrosation: involvement of the nar operon of Escherichia coli. J Bacteriol. 1988 Jan;170(1):359–364. doi: 10.1128/jb.170.1.359-364.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Rosso J. P., Forget P., Pichinoty F. Les nitrate-réductases bactériennes. Solubilisation, purification et propriétés de l'enzyme A de Micrococcus halodenitrificans. Biochim Biophys Acta. 1973 Oct 10;321(2):443–455. doi: 10.1016/0005-2744(73)90185-x. [DOI] [PubMed] [Google Scholar]
  17. Smith M. S. Dissimilatory Reduction of NO(2) to NH(4) and N(2)O by a Soil Citrobacter sp. Appl Environ Microbiol. 1982 Apr;43(4):854–860. doi: 10.1128/aem.43.4.854-860.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Smith M. S. Nitrous oxide production by Escherichia coli is correlated with nitrate reductase activity. Appl Environ Microbiol. 1983 May;45(5):1545–1547. doi: 10.1128/aem.45.5.1545-1547.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Sørensen J. Occurrence of nitric and nitrous oxides in a coastal marine sediment. Appl Environ Microbiol. 1978 Dec;36(6):809–813. doi: 10.1128/aem.36.6.809-813.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. van Riet J., van Ed J. H., Wever R., van Gelder B. F., Planta R. J. Characterization of the respiratory nitrate reductase of Klebsiella aerogenes as a molybdenum-containing iron-sulfur enzyme. Biochim Biophys Acta. 1975 Oct 20;405(2):306–317. doi: 10.1016/0005-2795(75)90096-3. [DOI] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES