Abstract
A naphthalene-2,6-disulfonic acid (2,6NDS)-degrading Moraxella strain was isolated from an industrial sewage plant. This culture could also be adapted to naphthalene-1,6-disulfonic acid as growth substrate. Regioselective 1,2-dioxygenation effected desulfonation and catabolism to 5-sulfosalicylic acid (5SS), which also could be used as the sole carbon source. 5SS-grown cells exhibited high gentisate 1,2-dioxygenase activity. Neither 5SS- nor gentisate-grown cells oxidized 2,6NDS; therefore, 2,6NDS or an early metabolite must serve as an inducer of the initial catabolic enzyme(s).
Full text
PDF![1842](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d5b8/202755/1cb5d202e08d/aem00112-0208.png)
![1843](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d5b8/202755/ad40a7c73df3/aem00112-0209.png)
![1844](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d5b8/202755/aba5b1067555/aem00112-0210.png)
![1845](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d5b8/202755/1c3934486138/aem00112-0211.png)
![1846](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d5b8/202755/1a16cea1772a/aem00112-0212.png)
![1847](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d5b8/202755/e15584e54da4/aem00112-0213.png)
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
- Brilon C., Beckmann W., Hellwig M., Knackmuss H. J. Enrichment and isolation of naphthalenesulfonic Acid-utilizing pseudomonads. Appl Environ Microbiol. 1981 Jul;42(1):39–43. doi: 10.1128/aem.42.1.39-43.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brilon C., Beckmann W., Knackmuss H. J. Catabolism of Naphthalenesulfonic Acids by Pseudomonas sp. A3 and Pseudomonas sp. C22. Appl Environ Microbiol. 1981 Jul;42(1):44–55. doi: 10.1128/aem.42.1.44-55.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jerina D. M., Daly J. W., Jeffrey A. M., Gibson D. T. Cis-1,2-dihydroxy-1,2-dihydronaphthalene: a bacterial metabolite from naphthalene. Arch Biochem Biophys. 1971 Jan;142(1):394–396. doi: 10.1016/0003-9861(71)90298-0. [DOI] [PubMed] [Google Scholar]
- Johnston J. B., Murray K., Cain R. B. Microbial metabolism of aryl sulphonates a re-assessment of colorimetric methods for the determination of sulphite and their use in measuring desulphonation of aryl and alkylbenzene sulphonates. Antonie Van Leeuwenhoek. 1975;41(4):493–511. doi: 10.1007/BF02565092. [DOI] [PubMed] [Google Scholar]
- Nörtemann B., Baumgarten J., Rast H. G., Knackmuss H. J. Bacterial communities degrading amino- and hydroxynaphthalene-2-sulfonates. Appl Environ Microbiol. 1986 Nov;52(5):1195–1202. doi: 10.1128/aem.52.5.1195-1202.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
- SCHMIDT K., LIAAENJENSEN S., SCHLEGEL H. G. DIE CAROTINOIDE DER THIORHODACEAE. I. OKENON ALS HAUPTEAROTINOID VON CHROMATIUM OKENII PERTY. Arch Mikrobiol. 1963 Aug 1;46:117–126. [PubMed] [Google Scholar]
- Spain J. C., Wyss O., Gibson D. T. Enzymatic oxidation of p-nitrophenol. Biochem Biophys Res Commun. 1979 May 28;88(2):634–641. doi: 10.1016/0006-291x(79)92095-3. [DOI] [PubMed] [Google Scholar]