Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1988 Aug;54(8):1907–1910. doi: 10.1128/aem.54.8.1907-1910.1988

Nodulation and Nitrogen Fixation Efficacy of Rhizobium fredii with Phaseolus vulgaris Genotypes

Michael J Sadowsky 1,*, Perry B Cregan 1, Harold H Keyser 1
PMCID: PMC202777  PMID: 16347705

Abstract

Phaseolus plant introduction (PI) genotypes (consisting of 684 P. vulgaris, 26 P. acutifolius, 39 P. lunatus, and 5 P. coccineus accessions) were evaluated for their ability to form effective symbioses with strains of six slow-growing (Bradyrhizobium) and four fast-growing (Rhizobium fredii) soybean rhizobia. Of the 684 P. vulgaris genotypes examined, three PIs were found to form effective nitrogen-fixing symbioses with the R. fredii strains. While none of the Bradyrhizobium strains nodulated any of the genotypes tested, some produced large numbers of undifferentiated root proliferations (hypertrophies). A symbiotic plasmid-cured R. fredii strain failed to nodulate the P. vulgaris PIs and cultivars, suggesting that P. vulgaris host range genes are Sym plasmid borne in the fast-growing soybean rhizobia.

Full text

PDF

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barua M., Bhaduri P. N. Rhizobial relationship of the genus Phaseolus. I. Cross-inoculation performance of different species to R. phaseoli, R. japonicum, and the cowpea organism. Can J Microbiol. 1967 Jul;13(7):910–913. doi: 10.1139/m67-120. [DOI] [PubMed] [Google Scholar]
  2. Cregan P. B., Keyser H. H. Influence of Glycine spp. on Competitiveness of Bradyrhizobium japonicum and Rhizobium fredii. Appl Environ Microbiol. 1988 Mar;54(3):803–808. doi: 10.1128/aem.54.3.803-808.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Eardly B. D., Hannaway D. B., Bottomley P. J. Characterization of Rhizobia from Ineffective Alfalfa Nodules: Ability to Nodulate Bean Plants [Phaseolus vulgaris (L.) Savi.]. Appl Environ Microbiol. 1985 Dec;50(6):1422–1427. doi: 10.1128/aem.50.6.1422-1427.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Hardy R. W., Holsten R. D., Jackson E. K., Burns R. C. The acetylene-ethylene assay for n(2) fixation: laboratory and field evaluation. Plant Physiol. 1968 Aug;43(8):1185–1207. doi: 10.1104/pp.43.8.1185. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Sadowsky M. J., Bohlool B. B., Keyser H. H. Serological Relatedness of Rhizobium fredii to Other Rhizobia and to the Bradyrhizobia. Appl Environ Microbiol. 1987 Aug;53(8):1785–1789. doi: 10.1128/aem.53.8.1785-1789.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Sadowsky M. J., Bohlool B. B. Possible involvement of a megaplasmid in nodulation of soybeans by fast-growing rhizobia from china. Appl Environ Microbiol. 1983 Oct;46(4):906–911. doi: 10.1128/aem.46.4.906-911.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Schmidt E. L., Bakole R. O., Bohlool B. B. Fluorescent-antibody approach to study of rhizobia in soil. J Bacteriol. 1968 Jun;95(6):1987–1992. doi: 10.1128/jb.95.6.1987-1992.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Shantharam S., Wong P. P. Recognition of leguminous hosts by a promiscuous Rhizobium strain. Appl Environ Microbiol. 1982 Mar;43(3):677–685. doi: 10.1128/aem.43.3.677-685.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES