Abstract
Our experiments with selected organic substrates reveal that the rate-limiting process governing microbial degradation rates changes with substrate concentration, S, in such a manner that substrate removal is enhanced at lower values of S. This enhancement is the result of the dominance of very efficient systems for substrate removal at low substrate concentrations. The variability of dominant kinetic parameters over a range of S causes the kinetics of complex assemblages to be profoundly dissimilar to those of systems possessing a single set of kinetic parameters; these findings necessitate taking a new approach to predicting substrate removal rates over wide ranges of S.
Full text
PDF



Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Atkins G. L., Nimmo I. A. The reliability of Michaelis constants and maximum velocities estimated by using the integrated Michaelis-Menten equation. Biochem J. 1973 Dec;135(4):779–784. doi: 10.1042/bj1350779. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Button D. K. Kinetics of nutrient-limited transport and microbial growth. Microbiol Rev. 1985 Sep;49(3):270–297. doi: 10.1128/mr.49.3.270-297.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Eighmy T. T., Bishop P. L. Multiplicity of aspartate transport in thin wastewater biofilms. Appl Environ Microbiol. 1984 Dec;48(6):1151–1158. doi: 10.1128/aem.48.6.1151-1158.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hobbie J. E., Daley R. J., Jasper S. Use of nuclepore filters for counting bacteria by fluorescence microscopy. Appl Environ Microbiol. 1977 May;33(5):1225–1228. doi: 10.1128/aem.33.5.1225-1228.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jones S. H., Alexander M. Kinetics of mineralization of phenols in lake water. Appl Environ Microbiol. 1986 May;51(5):891–897. doi: 10.1128/aem.51.5.891-897.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lewis D. L., Hodson R. E., Freeman L. F. Multiphasic kinetics for transformation of methyl parathion by flavobacterium species. Appl Environ Microbiol. 1985 Sep;50(3):553–557. doi: 10.1128/aem.50.3.553-557.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lewis D. L., Kollig H. P., Hall T. L. Predicting 2,4-dichlorophenoxyacetic Acid ester transformation rates in periphyton-dominated ecosystems. Appl Environ Microbiol. 1983 Jul;46(1):146–151. doi: 10.1128/aem.46.1.146-151.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Paris D. F., Steen W. C., Baughman G. L., Barnett J. T. Second-order model to predict microbial degradation of organic compounds in natural waters. Appl Environ Microbiol. 1981 Mar;41(3):603–609. doi: 10.1128/aem.41.3.603-609.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pfaender F. K., Bartholomew G. W. Measurement of aquatic biodegradation rates by determining heterotrophic uptake of radiolabeled pollutants. Appl Environ Microbiol. 1982 Jul;44(1):159–164. doi: 10.1128/aem.44.1.159-164.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Raaijmakers J. G. Statistical analysis of the Michaelis-Menten equation. Biometrics. 1987 Dec;43(4):793–803. [PubMed] [Google Scholar]
- Schmidt S. K., Simkins S., Alexander M. Models for the kinetics of biodegradation of organic compounds not supporting growth. Appl Environ Microbiol. 1985 Aug;50(2):323–331. doi: 10.1128/aem.50.2.323-331.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
