Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1988 Aug;54(8):2091–2095. doi: 10.1128/aem.54.8.2091-2095.1988

Effect of Benzoic Acid on Growth Yield of Yeasts Differing in Their Resistance to Preservatives

Alan D Warth 1
PMCID: PMC202808  PMID: 16347720

Abstract

Yeasts grown in the presence of benzoic acid tolerated 40 to 100% higher benzoic acid concentrations than did those grown in the absence of weak-acid-type preservatives. They also accumulated less benzoate in the presence of glucose. In chemostat cultures, benzoic acid reduced growth yield and the rate of cell production but increased specific fermentation rates. Benzoate contents were lower than those required for equilibrium when cells were impermeable to benzoate anion. Intracellular pHs were maintained near neutrality. Between species, stimulation of fermentation was inversely related to preservation resistance but was unrelated to the maximum rate of fermentation. The results show that a major effect of benzoic acid on yeasts in the presence of an energy source is the energy requirement for the reduction in cytoplasmic benzoate concentration and maintenance of pH. This energy source is unavailable for growth, resulting in lower growth yields and rates. Resistant species may be less permeable to undissociated benzoic acid.

Full text

PDF
2091

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BELL T. A., ETCHELLS J. L., BORG A. F. Influence of sorbic acid on the growth of certain species of bacteria, yeasts, and filamentous fungi. J Bacteriol. 1959 May;77(5):573–580. doi: 10.1128/jb.77.5.573-580.1959. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Borst-Pauwels G. W. Ion transport in yeast. Biochim Biophys Acta. 1981 Dec;650(2-3):88–127. doi: 10.1016/0304-4157(81)90002-2. [DOI] [PubMed] [Google Scholar]
  3. Deák T., Novák E. K. Effect of sorbic acid on the growth of yeasts on various carbohydrates. Acta Microbiol Acad Sci Hung. 1970;17(3):257–266. [PubMed] [Google Scholar]
  4. Freese E., Sheu C. W., Galliers E. Function of lipophilic acids as antimicrobial food additives. Nature. 1973 Feb 2;241(5388):321–325. doi: 10.1038/241321a0. [DOI] [PubMed] [Google Scholar]
  5. Goulbourne E., Jr, Matin M., Zychlinsky E., Matin A. Mechanism of delta pH maintenance in active and inactive cells of an obligately acidophilic bacterium. J Bacteriol. 1986 Apr;166(1):59–65. doi: 10.1128/jb.166.1.59-65.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Hunter D. R., Segel I. H. Effect of weak acids on amino acid transport by Penicillium chrysogenum: evidence for a proton or charge gradient as the driving force. J Bacteriol. 1973 Mar;113(3):1184–1192. doi: 10.1128/jb.113.3.1184-1192.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Krebs H. A., Wiggins D., Stubbs M., Sols A., Bedoya F. Studies on the mechanism of the antifungal action of benzoate. Biochem J. 1983 Sep 15;214(3):657–663. doi: 10.1042/bj2140657. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Macris B. J. Mechanism of benzoic acid uptake by Saccharomyces cerevisiae. Appl Microbiol. 1975 Oct;30(4):503–506. doi: 10.1128/am.30.4.503-506.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Navon G., Shulman R. G., Yamane T., Eccleshall T. R., Lam K. B., Baronofsky J. J., Marmur J. Phosphorus-31 nuclear magnetic resonance studies of wild-type and glycolytic pathway mutants of Saccharomyces cerevisiae. Biochemistry. 1979 Oct 16;18(21):4487–4499. doi: 10.1021/bi00588a006. [DOI] [PubMed] [Google Scholar]
  10. SMOGYI M. Notes on sugar determination. J Biol Chem. 1952 Mar;195(1):19–23. [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES