Abstract
The unsaturated fatty acid auxotroph Escherichia coli AK7 was provided with either oleic acid (cis 18:1) or linolenic acid (cis 18:3) to vary the degree of unsaturation of cell membrane lipids. The susceptibility of oleic acid- and linolenic acid-grown cells to starvation at 37 degrees C in 154 mM NaCl was compared following the decline in the number of CFU by plating the cells on agar medium. The decline in CFU was faster for linolenic acid-than for oleic acid-grown cells, but it was not indicative of cell death, since culturable CFU was recovered after respirable substrate was added to the starved cell suspension. Cell envelope microviscosity (determined by fluorescence polarization) of oleic acid- and linolenic acid-grown cells was equal in the presence of a respirable substrate, but in its absence the microviscosity of linolenic acid-grown cells was lower than that of oleic acid-grown cells. The results suggest that cell envelope microviscosity is an important factor in determining the sensitivity of E. coli to conditions of nutrient depletion.
Full text
PDF




Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Buege J. A., Aust S. D. Microsomal lipid peroxidation. Methods Enzymol. 1978;52:302–310. doi: 10.1016/s0076-6879(78)52032-6. [DOI] [PubMed] [Google Scholar]
- Coleman W. G., Jr, Leive L. Two mutations which affect the barrier function of the Escherichia coli K-12 outer membrane. J Bacteriol. 1979 Sep;139(3):899–910. doi: 10.1128/jb.139.3.899-910.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Costerton J. W., Ingram J. M., Cheng K. J. Structure and function of the cell envelope of gram-negative bacteria. Bacteriol Rev. 1974 Mar;38(1):87–110. doi: 10.1128/br.38.1.87-110.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cronan J. E., Jr, Gelmann E. P. Physical properties of membrane lipids: biological relevance and regulation. Bacteriol Rev. 1975 Sep;39(3):232–256. doi: 10.1128/br.39.3.232-256.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dennis W. H., Yatvin M. B. Correlation of hyperthermic sensitivity and membrane microviscosity in E. coli K1060. Int J Radiat Biol Relat Stud Phys Chem Med. 1981 Mar;39(3):265–271. doi: 10.1080/09553008114550341. [DOI] [PubMed] [Google Scholar]
- Esfahani M., Ioneda T., Wakil S. J. Studies on the control of fatty acid metabolism. 3. Incorporation of fatty acids into phospholipids and regulation of fatty acid synthetase of Escherichia coli. J Biol Chem. 1971 Jan 10;246(1):50–56. [PubMed] [Google Scholar]
- Fay J. P., Farías R. N. Inhibitory action of a non-metabolizable fatty acid on the growth of Escherichia coli: role of metabolism and outer membrane integrity. J Bacteriol. 1977 Dec;132(3):790–795. doi: 10.1128/jb.132.3.790-795.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Flint K. P. The long-term survival of Escherichia coli in river water. J Appl Bacteriol. 1987 Sep;63(3):261–270. doi: 10.1111/j.1365-2672.1987.tb04945.x. [DOI] [PubMed] [Google Scholar]
- Haest C. W., de Gier J., van Es G. A., Verkleij A. J., van Deenen L. L. Fragility of the permeability barrier of Escherichia coli. Biochim Biophys Acta. 1972 Oct 23;288(1):43–53. doi: 10.1016/0005-2736(72)90221-0. [DOI] [PubMed] [Google Scholar]
- Hanski E., Rimon G., Levitzki A. Adenylate cyclase activation by the beta-adrenergic receptors as a diffusion-controlled process. Biochemistry. 1979 Mar 6;18(5):846–853. doi: 10.1021/bi00572a017. [DOI] [PubMed] [Google Scholar]
- Harley J. B., Santangelo G. M., Rasmussen H., Goldfine H. Dependence of Escherichia coli hyperbaric oxygen toxicity on the lipid acyl chain composition. J Bacteriol. 1978 Jun;134(3):808–820. doi: 10.1128/jb.134.3.808-820.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kuhry J. G., Duportail G., Bronner C., Laustriat G. Plasma membrane fluidity measurements on whole living cells by fluorescence anisotropy of trimethylammoniumdiphenylhexatriene. Biochim Biophys Acta. 1985 Apr 22;845(1):60–67. doi: 10.1016/0167-4889(85)90055-2. [DOI] [PubMed] [Google Scholar]
- Kunimoto M., Inoue K., Nojima S. Effect of ferrous ion and ascorbate-induced lipid peroxidation on liposomal membranes. Biochim Biophys Acta. 1981 Aug 6;646(1):169–178. doi: 10.1016/0005-2736(81)90284-4. [DOI] [PubMed] [Google Scholar]
- Lin E. C. Glycerol dissimilation and its regulation in bacteria. Annu Rev Microbiol. 1976;30:535–578. doi: 10.1146/annurev.mi.30.100176.002535. [DOI] [PubMed] [Google Scholar]
- Nikaido H., Vaara M. Molecular basis of bacterial outer membrane permeability. Microbiol Rev. 1985 Mar;49(1):1–32. doi: 10.1128/mr.49.1.1-32.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Overath P., Schairer H. U., Stoffel W. Correlation of in vivo and in vitro phase transitions of membrane lipids in Escherichia coli. Proc Natl Acad Sci U S A. 1970 Oct;67(2):606–612. doi: 10.1073/pnas.67.2.606. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pang K. Y., Chang T. L., Miller K. W. On the coupling between anesthetic induced membrane fluidization and cation permeability in lipid vesicles. Mol Pharmacol. 1979 May;15(3):729–738. [PubMed] [Google Scholar]
- Roszak D. B., Colwell R. R. Survival strategies of bacteria in the natural environment. Microbiol Rev. 1987 Sep;51(3):365–379. doi: 10.1128/mr.51.3.365-379.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Roszak D. B., Grimes D. J., Colwell R. R. Viable but nonrecoverable stage of Salmonella enteritidis in aquatic systems. Can J Microbiol. 1984 Mar;30(3):334–338. doi: 10.1139/m84-049. [DOI] [PubMed] [Google Scholar]
- Shinitzky M., Barenholz Y. Fluidity parameters of lipid regions determined by fluorescence polarization. Biochim Biophys Acta. 1978 Dec 15;515(4):367–394. doi: 10.1016/0304-4157(78)90010-2. [DOI] [PubMed] [Google Scholar]
- Silbert D. F., Cohen M., Harder M. E. The effect of exogenous fatty acids on fatty acid metabolism in Escherichia coli K-12. J Biol Chem. 1972 Mar 25;247(6):1699–1707. [PubMed] [Google Scholar]
- Siñeriz F., Bloj B., Farías R. N., Trucco R. E. Regulation by membrane fluidity of the allosteric behavior of the (Ca2)-adenosine triphosphatase from Escherichia coli. J Bacteriol. 1973 Sep;115(3):723–726. doi: 10.1128/jb.115.3.723-726.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Suzuki S., Akamatsu Y. Increase of radiation damage to potassium-ion permeability in E. coli cells with decrease in membrane fluidity. Int J Radiat Biol Relat Stud Phys Chem Med. 1980 May;37(5):475–482. doi: 10.1080/09553008014550591. [DOI] [PubMed] [Google Scholar]
- Suzuki S., Akamatsu Y. Involvement of membrane lipids in radiation damage to potassium ion permeability of Escherichia coli. Int J Radiat Biol Relat Stud Phys Chem Med. 1978 Feb;33(2):185–190. doi: 10.1080/09553007814550071. [DOI] [PubMed] [Google Scholar]
- Ulrich A. K., de Mendoza D., Garwin J. L., Cronan J. E., Jr Genetic and biochemical analyses of Escherichia coli mutants altered in the temperature-dependent regulation of membrane lipid composition. J Bacteriol. 1983 Apr;154(1):221–230. doi: 10.1128/jb.154.1.221-230.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wu G. S., Stein R. A., Mead J. F. Autoxidation of phosphatidylcholine liposomes. Lipids. 1982 Jun;17(6):403–413. doi: 10.1007/BF02535219. [DOI] [PubMed] [Google Scholar]
- Yatvin M. B., Gipp J. J., Dennis W. H. Influence of unsaturated fatty acids, membrane fluidity and oxygenation on the survival of an E. coli fatty acid auxotroph following gamma-irradiation. Int J Radiat Biol Relat Stud Phys Chem Med. 1979 Jun;35(6):539–548. doi: 10.1080/09553007914550651. [DOI] [PubMed] [Google Scholar]
- Yatvin M. B., Schmitz B. J., Dennis W. H. Radiation killing of E. coli K1060: role of membrane fluidity, hypothermia and local anaesthetics. Int J Radiat Biol Relat Stud Phys Chem Med. 1980 May;37(5):513–519. doi: 10.1080/09553008014550641. [DOI] [PubMed] [Google Scholar]