Abstract
Mechanisms and factors that normally control the large intestinal flora were investigated to determine whether changes in these parameters could account for the decreased bacterial concentration and facultative nature of the flora found in hibernating frogs. It appeared that low temperatures and limited nutrients were the main factors responsible for the decrease in the bacterial concentration and may also have been responsible for the increase in the proportions of facultative organisms, since no change in the redox potential was seen. The hibernating frogs were extremely sluggish in the removal of India ink particles from the circulatory system by the Kupffer cells of the liver compared with nonhibernating frogs. They were unable to mount an antibody response to bovine serum albumin, but their serum did exhibit killing of Pseudomonas paucimobilis, suggesting opsonization by preformed antibody and complement. The role of these host factors in protecting the hibernating frog against this indigenous flora is discussed.
Full text
PDF






Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Alcock D. M. Antibody production in the common frog, Rana temporaria. J Pathol Bacteriol. 1965 Jul;90(1):31–43. doi: 10.1002/path.1700900104. [DOI] [PubMed] [Google Scholar]
- Avtalion R. R., Wojdani A., Malik Z., Shahrabani R., Duczyminer M. Influence of environmental temperature on the immune response in fish. Curr Top Microbiol Immunol. 1973;61:1–35. doi: 10.1007/978-3-642-65531-9_1. [DOI] [PubMed] [Google Scholar]
- BIOZZI G., BENACERRAF B., STIFFEL C., HALPERN B. N. Etude quantitative de l'activité granulopexique du système réticuloendothéliai chez la souris. C R Seances Soc Biol Fil. 1954 Mar;148(5-6):431–435. [PubMed] [Google Scholar]
- Banas J. A., Loesche W. J., Nace G. W. Classification and distribution of large intestinal bacteria in nonhibernating and hibernating leopard frogs (Rana pipiens). Appl Environ Microbiol. 1988 Sep;54(9):2305–2310. doi: 10.1128/aem.54.9.2305-2310.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Baranowski-Smith L. L., Smith C. J. A simple method for obtaining blood samples from mature frogs. Lab Anim Sci. 1983 Aug;33(4):386–387. [PubMed] [Google Scholar]
- Bass D. A., Parce J. W., Dechatelet L. R., Szejda P., Seeds M. C., Thomas M. Flow cytometric studies of oxidative product formation by neutrophils: a graded response to membrane stimulation. J Immunol. 1983 Apr;130(4):1910–1917. [PubMed] [Google Scholar]
- Day N. K., Good R. A., Finstad J., Johannsen R., Pickering R. J., Gewurz H. Interactions between endotoxic lipopolysaccharides and the complement system in the sera of lower vertebrates. Proc Soc Exp Biol Med. 1970 Apr;133(4):1397–1401. doi: 10.3181/00379727-133-34698. [DOI] [PubMed] [Google Scholar]
- Geczy C. L., Green P. C., Steiner L. A. Immunoglobulins in the developing amphibian, Rana catesbeiana. J Immunol. 1973 Oct;111(4):1261–1267. [PubMed] [Google Scholar]
- Goryshina E. N. Izuchenie kinetiki reproduktsii i differentsirovki kletok neitrofil'no-makrofagal'nogo riada travianoi liagushki v razlichnye sezony goda. Tsitologiia. 1980 Jul;22(7):765–774. [PubMed] [Google Scholar]
- Gossling J., Loesche W. J., Nace G. W. Response of intestinal flora of laboratory-reared leopard frogs (Rana pipiens) to cold and fasting. Appl Environ Microbiol. 1982 Jul;44(1):67–71. doi: 10.1128/aem.44.1.67-71.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Green C., Steiner L. A. Isolation and preliminary characterization of two varieties of low molecular weight immunoglobulin in the bullfrog, Rana catesbeiana. J Immunol. 1976 Aug;117(2):364–374. [PubMed] [Google Scholar]
- Green N., Cohen N. Effect of temperature on serum complement levels in the leopard frog, Rana pipiens. Dev Comp Immunol. 1977 Jan;1(1):59–64. doi: 10.1016/s0145-305x(77)80051-7. [DOI] [PubMed] [Google Scholar]
- HILDEMANN W. H., HAAS R. Homotransplantation immunity and tolerance in the bullfrog. J Immunol. 1959 Nov;83:478–485. [PubMed] [Google Scholar]
- KRUEGER R. G., TWEDT R. M. CELLULAR DEMONSTRATION OF ANTIBODY PRODUCTION IN RANA PIPIENS. J Immunol. 1963 Jun;90:952–955. [PubMed] [Google Scholar]
- Kenney E. B., Ash M. M., Jr Oxidation reduction potential of developing plaque, periodontal pockets and gingival sulci. J Periodontol. 1969 Nov;40(11):630–633. doi: 10.1902/jop.1969.40.11.630. [DOI] [PubMed] [Google Scholar]
- Koopman J. P., Janssen F. G., van Druten J. A. Oxidation-reduction potentials in the cecal contents of rats and mice. Proc Soc Exp Biol Med. 1975 Sep;149(4):995–999. doi: 10.3181/00379727-149-38942. [DOI] [PubMed] [Google Scholar]
- Macy J. M., Probst I. The biology of gastrointestinal bacteroides. Annu Rev Microbiol. 1979;33:561–594. doi: 10.1146/annurev.mi.33.100179.003021. [DOI] [PubMed] [Google Scholar]
- Mangan D. F., Lopatin D. E. In vitro stimulation of immunoglobulin production from human peripheral blood lymphocytes by a soluble preparation of Actinomyces viscosus. Infect Immun. 1981 Jan;31(1):236–244. doi: 10.1128/iai.31.1.236-244.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
- McNabb P. C., Tomasi T. B. Host defense mechanisms at mucosal surfaces. Annu Rev Microbiol. 1981;35:477–496. doi: 10.1146/annurev.mi.35.100181.002401. [DOI] [PubMed] [Google Scholar]
- Mogensen C. E. The glomerular permeability determined by dextran clearance using Sephadex gel filtration. Scand J Clin Lab Invest. 1968;21(1):77–82. doi: 10.3109/00365516809076979. [DOI] [PubMed] [Google Scholar]
- Nord C. E., Kager L. The normal flora of the gastrointestinal tract. Neth J Med. 1984;27(7):249–252. [PubMed] [Google Scholar]
- Prohászka L., Baron F. Antibacterial effect of volatile fatty acids on enterobacteriaceae in the large intestine. Acta Vet Acad Sci Hung. 1982;30(1-3):9–16. [PubMed] [Google Scholar]
- Root R. K., Cohen M. S. The microbicidal mechanisms of human neutrophils and eosinophils. Rev Infect Dis. 1981 May-Jun;3(3):565–598. doi: 10.1093/clinids/3.3.565. [DOI] [PubMed] [Google Scholar]
- Savage D. C. Microbial ecology of the gastrointestinal tract. Annu Rev Microbiol. 1977;31:107–133. doi: 10.1146/annurev.mi.31.100177.000543. [DOI] [PubMed] [Google Scholar]
- Syed S. A., Loesche W. J. Survival of human dental plaque flora in various transport media. Appl Microbiol. 1972 Oct;24(4):638–644. doi: 10.1128/am.24.4.638-644.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wilkinson R. G., Gemski P., Jr, Stocker B. A. Non-smooth mutants of Salmonella typhimurium: differentiation by phage sensitivity and genetic mapping. J Gen Microbiol. 1972 May;70(3):527–554. doi: 10.1099/00221287-70-3-527. [DOI] [PubMed] [Google Scholar]
- Zasloff M. Magainins, a class of antimicrobial peptides from Xenopus skin: isolation, characterization of two active forms, and partial cDNA sequence of a precursor. Proc Natl Acad Sci U S A. 1987 Aug;84(15):5449–5453. doi: 10.1073/pnas.84.15.5449. [DOI] [PMC free article] [PubMed] [Google Scholar]