Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1988 Sep;54(9):2322–2324. doi: 10.1128/aem.54.9.2322-2324.1988

Electroporation-induced transformation of intact cells of Clostridium perfringens.

S P Allen 1, H P Blaschek 1
PMCID: PMC202858  PMID: 2903718

Abstract

Electroporation-induced transformation of intact cells of Clostridium perfringens 3624A with plasmids pAMB1 and pHR106 resulted in 3.8 X 10(-5) and 4.2 X 10(-4) transformants per viable cell, respectively. With respect to shuttle plasmid pHR106, these values represent a greater than 100-fold increase in transformation frequency when compared with the values reported with polyethylene glycol-induced L-phase variants.

Full text

PDF
2322

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Blaschek H. P., Klacik M. A. Development of a cell wash buffer that minimizes nucleic acid loss from Clostridium perfringens 10543 A. Can J Microbiol. 1985 Jun;31(6):575–578. doi: 10.1139/m85-107. [DOI] [PubMed] [Google Scholar]
  2. Blaschek H. P., Klacik M. A. Role of DNase in recovery of plasmid DNA from Clostridium perfringens. Appl Environ Microbiol. 1984 Jul;48(1):178–181. doi: 10.1128/aem.48.1.178-181.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Blaschek H. P., Solberg M. Isolation of a plasmid responsible for caseinase activity in Clostridium perfringens ATCC 3626B. J Bacteriol. 1981 Jul;147(1):262–266. doi: 10.1128/jb.147.1.262-266.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Brefort G., Magot M., Ionesco H., Sebald M. Characterization and transferability of Clostridium perfringens plasmids. Plasmid. 1977 Nov;1(1):52–66. doi: 10.1016/0147-619x(77)90008-7. [DOI] [PubMed] [Google Scholar]
  5. Clewell D. B. Nature of Col E 1 plasmid replication in Escherichia coli in the presence of the chloramphenicol. J Bacteriol. 1972 May;110(2):667–676. doi: 10.1128/jb.110.2.667-676.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Clewell D. B., Yagi Y., Dunny G. M., Schultz S. K. Characterization of three plasmid deoxyribonucleic acid molecules in a strain of Streptococcus faecalis: identification of a plasmid determining erythromycin resistance. J Bacteriol. 1974 Jan;117(1):283–289. doi: 10.1128/jb.117.1.283-289.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Heefner D. L., Squires C. H., Evans R. J., Kopp B. J., Yarus M. J. Transformation of Clostridium perfringens. J Bacteriol. 1984 Aug;159(2):460–464. doi: 10.1128/jb.159.2.460-464.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Ionesco H., Bieth G., Dauguet C., Bouanchaud D. Isolement et identification de deux plasmides d'une souche bactériocinogène de Clostridium perfringens. Ann Microbiol (Paris) 1976 Oct;127B(3):283–294. [PubMed] [Google Scholar]
  9. Kado C. I., Liu S. T. Rapid procedure for detection and isolation of large and small plasmids. J Bacteriol. 1981 Mar;145(3):1365–1373. doi: 10.1128/jb.145.3.1365-1373.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Lin Y. L., Blaschek H. P. Transformation of Heat-Treated Clostridium acetobutylicum Protoplasts with pUB110 Plasmid DNA. Appl Environ Microbiol. 1984 Oct;48(4):737–742. doi: 10.1128/aem.48.4.737-742.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Macrina F. L., Wood P. H., Jones K. R. Simple method for demonstrating small plasmid deoxyribonucleic acid molecules in oral streptococci. Appl Environ Microbiol. 1980 May;39(5):1070–1073. doi: 10.1128/aem.39.5.1070-1073.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Mahony D. E., Mader J. A., Dubel J. R. Transformation of Clostridium perfringens L forms with shuttle plasmid DNA. Appl Environ Microbiol. 1988 Jan;54(1):264–267. doi: 10.1128/aem.54.1.264-267.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Potter H., Weir L., Leder P. Enhancer-dependent expression of human kappa immunoglobulin genes introduced into mouse pre-B lymphocytes by electroporation. Proc Natl Acad Sci U S A. 1984 Nov;81(22):7161–7165. doi: 10.1073/pnas.81.22.7161. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Reid S. J., Allcock E. R., Jones D. T., Woods D. R. Transformation of Clostridium acetobutylicum Protoplasts with Bacteriophage DNA. Appl Environ Microbiol. 1983 Jan;45(1):305–307. doi: 10.1128/aem.45.1.305-307.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Roberts I., Holmes W. M., Hylemon P. B. Development of a new shuttle plasmid system for Escherichia coli and Clostridium perfringens. Appl Environ Microbiol. 1988 Jan;54(1):268–270. doi: 10.1128/aem.54.1.268-270.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Smith M. D., Clewell D. B. Return of Streptococcus faecalis DNA cloned in Escherichia coli to its original host via transformation of Streptococcus sanguis followed by conjugative mobilization. J Bacteriol. 1984 Dec;160(3):1109–1114. doi: 10.1128/jb.160.3.1109-1114.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Squires C. H., Heefner D. L., Evans R. J., Kopp B. J., Yarus M. J. Shuttle plasmids for Escherichia coli and Clostridium perfringens. J Bacteriol. 1984 Aug;159(2):465–471. doi: 10.1128/jb.159.2.465-471.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Sugar I. P., Neumann E. Stochastic model for electric field-induced membrane pores. Electroporation. Biophys Chem. 1984 May;19(3):211–225. doi: 10.1016/0301-4622(84)87003-9. [DOI] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES