Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1989 Jun;55(6):1656–1659. doi: 10.1128/aem.55.6.1656-1659.1989

Partial purification and characterization of an NAD-dependent 3 beta-hydroxysteroid dehydrogenase from Clostridium innocuum.

R Edenharder 1, M Pfützner 1
PMCID: PMC202924  PMID: 2764572

Abstract

In nine strains of Clostridium innocuum, 3 beta-hydroxysteroid-dehydrogenating activities were detected. 3 beta, 7 alpha, 12 alpha-Trihydroxy- and 3 beta-hydroxy-12-keto-5 beta-cholanoic acids were identified as reduction products of the respective 3-keto bile acids by gas-liquid chromatography and gas-liquid chromatography-mass spectrometry. One strain was shown to contain a NAD-dependent 3 beta-hydroxysteroid dehydrogenase. Enzyme production was constitutive in the absence of added bile acids. The specific enzyme activity was significantly reduced by growth medium supplementation with 3-keto bile acids, with trisubstituted acids being more effective than disubstituted ones. A pH optimum of 10.0 to 10.2 was found after partial purification by DEAE-cellulose chromatography. A molecular weight of about 56,000 was established. 3 beta-hydroxysteroid dehydrogenase activity was also found in the membrane fraction after solubilization with Triton X-100, suggesting that the enzyme was originally membrane bound. The enzyme reduced a 3-keto group in unconjugated and conjugated bile acids, lower Km values being demonstrated with disubstituted than with trisubstituted bile acids. Keto functions at C-7 and C-12 further reduced the Km value. The enzyme was found to be partially heat labile (86% inactivation at 50 degrees C for 10 min).

Full text

PDF
1656

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Akao T., Akao T., Hattori M., Namba T., Kobashi K. 3 beta-Hydroxysteroid dehydrogenase of Ruminococcus sp. from human intestinal bacteria. J Biochem. 1986 May;99(5):1425–1431. doi: 10.1093/oxfordjournals.jbchem.a135612. [DOI] [PubMed] [Google Scholar]
  2. Ali S. S., Kuksis A., Beveridge J. M. Excretion of bile acids by three men on corn oil and butterfat diets. Can J Biochem. 1966 Oct;44(10):1377–1388. doi: 10.1139/o66-156. [DOI] [PubMed] [Google Scholar]
  3. Aragozzini F., Canzi E., Ferrari A., Maconi E., Sidjimov A. A study on the mechanism of the epimerization at C-3 of chenodeoxycholic acid by Clostridium perfringens. Biochem J. 1985 Sep 1;230(2):451–455. doi: 10.1042/bj2300451. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Edenharder R., Knaflic T. Epimerization of chenodeoxycholic acid to ursodeoxycholic acid by human intestinal lecithinase-lipase-negative Clostridia. J Lipid Res. 1981 May;22(4):652–658. [PubMed] [Google Scholar]
  5. Edenharder R., Pfützner A. Characterization of NADP-dependent 12 beta-hydroxysteroid dehydrogenase from Clostridium paraputrificum. Biochim Biophys Acta. 1988 Oct 14;962(3):362–370. doi: 10.1016/0005-2760(88)90266-4. [DOI] [PubMed] [Google Scholar]
  6. Edenharder R., Pfützner M., Hammann R. NADP-dependent 3 beta-, 7 alpha- and 7 beta-hydroxysteroid dehydrogenase activities from a lecithinase-lipase-negative Clostridium species 25.11.c. Biochim Biophys Acta. 1989 Mar 14;1002(1):37–44. doi: 10.1016/0005-2760(89)90061-1. [DOI] [PubMed] [Google Scholar]
  7. Edenharder R., Schneider J. 12 beta-dehydrogenation of bile acids by Clostridium paraputrificum, C. tertium, and C. difficile and epimerization at carbon-12 of deoxycholic acid by cocultivation with 12 alpha-dehydrogenating Eubacterium lentum. Appl Environ Microbiol. 1985 Apr;49(4):964–968. doi: 10.1128/aem.49.4.964-968.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Edenharder R., Stubenrauch S., Slemrova J. Die Bedeutung des bakteriellen Steroidabbaus für die Atiologie des Dickdarmkrebses. V. Metabolismus von Chenodesoxycholsäure durch saccharolytische Bacteroides-Arten. Zentralbl Bakteriol Orig B. 1976 Aug;162(5-6):506–518. [PubMed] [Google Scholar]
  9. Hirano S., Masuda N. Characterization of NADP-dependent 7 beta-hydroxysteroid dehydrogenases from Peptostreptococcus productus and Eubacterium aerofaciens. Appl Environ Microbiol. 1982 May;43(5):1057–1063. doi: 10.1128/aem.43.5.1057-1063.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Hirano S., Masuda N., Oda H., Mukai H. Transformation of bile acids by Clostridium perfringens. Appl Environ Microbiol. 1981 Sep;42(3):394–399. doi: 10.1128/aem.42.3.394-399.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Hirano S., Masuda N. Transformation of bile acids by Eubacterium lentum. Appl Environ Microbiol. 1981 Nov;42(5):912–915. doi: 10.1128/aem.42.5.912-915.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. MARCUS P. I., TALALAY P. Induction and purification of alpha- and beta-hydroxysteroid dehydrogenases. J Biol Chem. 1956 Feb;218(2):661–674. [PubMed] [Google Scholar]
  13. MacDonald I. A., Mahony D. E., Jellet J. F., Meier C. E. NAD-dependent 3alpha- and 12alpha-hydroxysteroid dehydrogenase activities from Eubacterium lentum ATCC no. 25559. Biochim Biophys Acta. 1977 Dec 21;489(3):466–476. doi: 10.1016/0005-2760(77)90167-9. [DOI] [PubMed] [Google Scholar]
  14. MacDonald I. A., Roach P. D. Bile induction of 7 alpha- and 7 beta-hydroxysteroid dehydrogenases in Clostridium absonum. Biochim Biophys Acta. 1981 Aug 24;665(2):262–269. doi: 10.1016/0005-2760(81)90011-4. [DOI] [PubMed] [Google Scholar]
  15. MacDonald I. A., Rochon Y. P., Hutchison D. M., Holdeman L. V. Formation of ursodeoxycholic acid from chenodeoxycholic acid by a 7 beta-hydroxysteroid dehydrogenase-elaborating Eubacterium aerofaciens strain cocultured with 7 alpha-hydroxysteroid dehydrogenase-elaborating organisms. Appl Environ Microbiol. 1982 Nov;44(5):1187–1195. doi: 10.1128/aem.44.5.1187-1195.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Macdonald I. A., Bokkenheuser V. D., Winter J., McLernon A. M., Mosbach E. H. Degradation of steroids in the human gut. J Lipid Res. 1983 Jun;24(6):675–700. [PubMed] [Google Scholar]
  17. Macdonald I. A., Hutchison D. M., Forrest T. P., Bokkenheuser V. D., Winter J., Holdeman L. V. Metabolism of primary bile acids by Clostridium perfringens. J Steroid Biochem. 1983 Jan;18(1):97–104. doi: 10.1016/0022-4731(83)90336-9. [DOI] [PubMed] [Google Scholar]
  18. Mitsuoka T., Ono K. Die Faekalflora bei Menschen. V. Mitteilung: Die Schwankungen in der Zusammensetzung der Faekalflora gesunder Erwachsener. Zentralbl Bakteriol Orig A. 1977 Jun;238(2):228–236. [PubMed] [Google Scholar]
  19. Setchell K. D., Lawson A. M., Tanida N., Sjövall J. General methods for the analysis of metabolic profiles of bile acids and related compounds in feces. J Lipid Res. 1983 Aug;24(8):1085–1100. [PubMed] [Google Scholar]
  20. Stokes N. A., Hylemon P. B. Characterization of delta 4-3-ketosteroid-5 beta-reductase and 3 beta-hydroxysteroid dehydrogenase in cell extracts of Clostridium innocuum. Biochim Biophys Acta. 1985 Sep 11;836(2):255–261. doi: 10.1016/0005-2760(85)90073-6. [DOI] [PubMed] [Google Scholar]
  21. Sutherland J. D., Williams C. N. Bile acid induction of 7 alpha- and 7 beta-hydroxysteroid dehydrogenases in Clostridium limosum. J Lipid Res. 1985 Mar;26(3):344–350. [PubMed] [Google Scholar]
  22. Tanida N., Hikasa Y., Hosomi M., Satomi M., Oohama I., Shimoyama T. Fecal bile acid analysis in healthy Japanese subjects using a lipophilic anion exchanger, capillary column gas chromatography and mass spectrometry. Gastroenterol Jpn. 1981;16(4):363–371. doi: 10.1007/BF02774469. [DOI] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES