Abstract
In nine strains of Clostridium innocuum, 3 beta-hydroxysteroid-dehydrogenating activities were detected. 3 beta, 7 alpha, 12 alpha-Trihydroxy- and 3 beta-hydroxy-12-keto-5 beta-cholanoic acids were identified as reduction products of the respective 3-keto bile acids by gas-liquid chromatography and gas-liquid chromatography-mass spectrometry. One strain was shown to contain a NAD-dependent 3 beta-hydroxysteroid dehydrogenase. Enzyme production was constitutive in the absence of added bile acids. The specific enzyme activity was significantly reduced by growth medium supplementation with 3-keto bile acids, with trisubstituted acids being more effective than disubstituted ones. A pH optimum of 10.0 to 10.2 was found after partial purification by DEAE-cellulose chromatography. A molecular weight of about 56,000 was established. 3 beta-hydroxysteroid dehydrogenase activity was also found in the membrane fraction after solubilization with Triton X-100, suggesting that the enzyme was originally membrane bound. The enzyme reduced a 3-keto group in unconjugated and conjugated bile acids, lower Km values being demonstrated with disubstituted than with trisubstituted bile acids. Keto functions at C-7 and C-12 further reduced the Km value. The enzyme was found to be partially heat labile (86% inactivation at 50 degrees C for 10 min).
Full text
PDF



Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Akao T., Akao T., Hattori M., Namba T., Kobashi K. 3 beta-Hydroxysteroid dehydrogenase of Ruminococcus sp. from human intestinal bacteria. J Biochem. 1986 May;99(5):1425–1431. doi: 10.1093/oxfordjournals.jbchem.a135612. [DOI] [PubMed] [Google Scholar]
- Ali S. S., Kuksis A., Beveridge J. M. Excretion of bile acids by three men on corn oil and butterfat diets. Can J Biochem. 1966 Oct;44(10):1377–1388. doi: 10.1139/o66-156. [DOI] [PubMed] [Google Scholar]
- Aragozzini F., Canzi E., Ferrari A., Maconi E., Sidjimov A. A study on the mechanism of the epimerization at C-3 of chenodeoxycholic acid by Clostridium perfringens. Biochem J. 1985 Sep 1;230(2):451–455. doi: 10.1042/bj2300451. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Edenharder R., Knaflic T. Epimerization of chenodeoxycholic acid to ursodeoxycholic acid by human intestinal lecithinase-lipase-negative Clostridia. J Lipid Res. 1981 May;22(4):652–658. [PubMed] [Google Scholar]
- Edenharder R., Pfützner A. Characterization of NADP-dependent 12 beta-hydroxysteroid dehydrogenase from Clostridium paraputrificum. Biochim Biophys Acta. 1988 Oct 14;962(3):362–370. doi: 10.1016/0005-2760(88)90266-4. [DOI] [PubMed] [Google Scholar]
- Edenharder R., Pfützner M., Hammann R. NADP-dependent 3 beta-, 7 alpha- and 7 beta-hydroxysteroid dehydrogenase activities from a lecithinase-lipase-negative Clostridium species 25.11.c. Biochim Biophys Acta. 1989 Mar 14;1002(1):37–44. doi: 10.1016/0005-2760(89)90061-1. [DOI] [PubMed] [Google Scholar]
- Edenharder R., Schneider J. 12 beta-dehydrogenation of bile acids by Clostridium paraputrificum, C. tertium, and C. difficile and epimerization at carbon-12 of deoxycholic acid by cocultivation with 12 alpha-dehydrogenating Eubacterium lentum. Appl Environ Microbiol. 1985 Apr;49(4):964–968. doi: 10.1128/aem.49.4.964-968.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Edenharder R., Stubenrauch S., Slemrova J. Die Bedeutung des bakteriellen Steroidabbaus für die Atiologie des Dickdarmkrebses. V. Metabolismus von Chenodesoxycholsäure durch saccharolytische Bacteroides-Arten. Zentralbl Bakteriol Orig B. 1976 Aug;162(5-6):506–518. [PubMed] [Google Scholar]
- Hirano S., Masuda N. Characterization of NADP-dependent 7 beta-hydroxysteroid dehydrogenases from Peptostreptococcus productus and Eubacterium aerofaciens. Appl Environ Microbiol. 1982 May;43(5):1057–1063. doi: 10.1128/aem.43.5.1057-1063.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hirano S., Masuda N., Oda H., Mukai H. Transformation of bile acids by Clostridium perfringens. Appl Environ Microbiol. 1981 Sep;42(3):394–399. doi: 10.1128/aem.42.3.394-399.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hirano S., Masuda N. Transformation of bile acids by Eubacterium lentum. Appl Environ Microbiol. 1981 Nov;42(5):912–915. doi: 10.1128/aem.42.5.912-915.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
- MARCUS P. I., TALALAY P. Induction and purification of alpha- and beta-hydroxysteroid dehydrogenases. J Biol Chem. 1956 Feb;218(2):661–674. [PubMed] [Google Scholar]
- MacDonald I. A., Mahony D. E., Jellet J. F., Meier C. E. NAD-dependent 3alpha- and 12alpha-hydroxysteroid dehydrogenase activities from Eubacterium lentum ATCC no. 25559. Biochim Biophys Acta. 1977 Dec 21;489(3):466–476. doi: 10.1016/0005-2760(77)90167-9. [DOI] [PubMed] [Google Scholar]
- MacDonald I. A., Roach P. D. Bile induction of 7 alpha- and 7 beta-hydroxysteroid dehydrogenases in Clostridium absonum. Biochim Biophys Acta. 1981 Aug 24;665(2):262–269. doi: 10.1016/0005-2760(81)90011-4. [DOI] [PubMed] [Google Scholar]
- MacDonald I. A., Rochon Y. P., Hutchison D. M., Holdeman L. V. Formation of ursodeoxycholic acid from chenodeoxycholic acid by a 7 beta-hydroxysteroid dehydrogenase-elaborating Eubacterium aerofaciens strain cocultured with 7 alpha-hydroxysteroid dehydrogenase-elaborating organisms. Appl Environ Microbiol. 1982 Nov;44(5):1187–1195. doi: 10.1128/aem.44.5.1187-1195.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Macdonald I. A., Bokkenheuser V. D., Winter J., McLernon A. M., Mosbach E. H. Degradation of steroids in the human gut. J Lipid Res. 1983 Jun;24(6):675–700. [PubMed] [Google Scholar]
- Macdonald I. A., Hutchison D. M., Forrest T. P., Bokkenheuser V. D., Winter J., Holdeman L. V. Metabolism of primary bile acids by Clostridium perfringens. J Steroid Biochem. 1983 Jan;18(1):97–104. doi: 10.1016/0022-4731(83)90336-9. [DOI] [PubMed] [Google Scholar]
- Mitsuoka T., Ono K. Die Faekalflora bei Menschen. V. Mitteilung: Die Schwankungen in der Zusammensetzung der Faekalflora gesunder Erwachsener. Zentralbl Bakteriol Orig A. 1977 Jun;238(2):228–236. [PubMed] [Google Scholar]
- Setchell K. D., Lawson A. M., Tanida N., Sjövall J. General methods for the analysis of metabolic profiles of bile acids and related compounds in feces. J Lipid Res. 1983 Aug;24(8):1085–1100. [PubMed] [Google Scholar]
- Stokes N. A., Hylemon P. B. Characterization of delta 4-3-ketosteroid-5 beta-reductase and 3 beta-hydroxysteroid dehydrogenase in cell extracts of Clostridium innocuum. Biochim Biophys Acta. 1985 Sep 11;836(2):255–261. doi: 10.1016/0005-2760(85)90073-6. [DOI] [PubMed] [Google Scholar]
- Sutherland J. D., Williams C. N. Bile acid induction of 7 alpha- and 7 beta-hydroxysteroid dehydrogenases in Clostridium limosum. J Lipid Res. 1985 Mar;26(3):344–350. [PubMed] [Google Scholar]
- Tanida N., Hikasa Y., Hosomi M., Satomi M., Oohama I., Shimoyama T. Fecal bile acid analysis in healthy Japanese subjects using a lipophilic anion exchanger, capillary column gas chromatography and mass spectrometry. Gastroenterol Jpn. 1981;16(4):363–371. doi: 10.1007/BF02774469. [DOI] [PubMed] [Google Scholar]
