Abstract
Growth of the marine bacterium Deleya aesta in a succinate minimal medium showed increasingly long lag phases as Na+ was decreased below the optimum (200 to 500 mM). The minimum Na+ concentration permitting growth consistently was 15 mM. Supplementation of the medium with KHCO3 (as a source of CO2) or yeast extract, especially in combination, reduced the lag phase, increased the rate of exponential growth, and allowed growth at 8 mM Na+. KHCO3 did not reduce the lag period but did increase the rate of exponential growth of Deleya venusta, Deleya pacifica, and Alteromonas haloplanktis 214. Yeast extract was active for all three. The effect of yeast extract on D. aesta could be reproduced by a mixture of amino acids approximating its amino acid composition. l-Alanine, l-aspartate, and l-methionine, in combination, were the most effective in reducing the lag phase, although not as effective as the complete mixture. Succinate, l-aspartate, and l-alanine were transported into the cells by largely independent pathways and oxidized at rates which were much lower at 10 than at 200 mM Na+. l-Methionine was transported at a low rate in the absence of Na+ and at a higher rate at 10 mM but was not oxidized. Above 25 mM Na+, the rate of transport of the carbon source was not the rate-limiting step for growth. It is concluded that a combination of transportable carbon sources reduced the lag period and increased the rate of exponential growth because they can be taken up independently and at low Na+ utilized simultaneously.
Full text
PDF






Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Drapeau G. R., Matula T. I., MacLeod R. A. Nutrition and metabolism of marine bacteria. XV. Relation of Na+-activated transport to the Na+ requirement of a marine pseudomonad for growth. J Bacteriol. 1966 Jul;92(1):63–71. doi: 10.1128/jb.92.1.63-71.1966. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Droniuk R., Wong P. T., Wisse G., Macleod R. A. Variation in Quantitative Requirements for Na for Transport of Metabolizable Compounds by the Marine Bacteria Alteromonas haloplanktis 214 and Vibrio fischeri. Appl Environ Microbiol. 1987 Jul;53(7):1487–1495. doi: 10.1128/aem.53.7.1487-1495.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
- GUIRARD B. M., SNELL E. E. NUTRITIONAL REQUIREMENTS OF LACTOBACILLUS 30A FOR GROWTH AND HISTIDINE DECARBOXYLASE PRODUCTION. J Bacteriol. 1964 Feb;87:370–376. doi: 10.1128/jb.87.2.370-376.1964. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gow J. A., MacLeod R. A., Goodbody M., Frank D., DeVoe L. Growth characteristics af low Na+ concentration and the stability of the Na+ requirement of a marine bacterium. Can J Microbiol. 1981 Mar;27(3):350–357. doi: 10.1139/m81-053. [DOI] [PubMed] [Google Scholar]
- Hassan H. M., MacLeod R. A. Kinetics of Na+-dependent K+ ion transport in a marine pseudomonad. J Bacteriol. 1975 Jan;121(1):160–164. doi: 10.1128/jb.121.1.160-164.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Khanna G., DeVoe L., Brown L., Niven D. F., MacLeod R. A. Relationship between ion requirements for respiration and membrane transport in a marine bacterium. J Bacteriol. 1984 Jan;157(1):59–63. doi: 10.1128/jb.157.1.59-63.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Larson R. J., Pate J. L. Glucose transport in isolated prosthecae of Asticcacaulis biprosthecum. J Bacteriol. 1976 Apr;126(1):282–293. doi: 10.1128/jb.126.1.282-293.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lochmüller H., Wood H. G., Davis J. J. Phosphoenolpyruvate carboxytransphosphorylase. II. Crystallization and properties. J Biol Chem. 1966 Dec 10;241(23):5678–5691. [PubMed] [Google Scholar]
- MACLEOD R. A. THE QUESTION OF THE EXISTENCE OF SPECIFIC MARINE BACTERIA. Bacteriol Rev. 1965 Mar;29:9–24. [PMC free article] [PubMed] [Google Scholar]
- MacLeod P. R., MacLeod R. A. Cloning in Escherichia coli K-12 of a Na+-dependent transport system from a marine bacterium. J Bacteriol. 1986 Mar;165(3):825–830. doi: 10.1128/jb.165.3.825-830.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Reichelt J. L., Baumann P. Effect of sodium chloride on growth of heterotrophic marine bacteria. Arch Microbiol. 1974 May 20;97(4):329–345. doi: 10.1007/BF00403071. [DOI] [PubMed] [Google Scholar]
- Repaske R., Ambrose C. A., Repaske A. C., De Lacy M. L. Bicarbonate requirement for elimination of the lag period of Hydrogenomonas eutropha. J Bacteriol. 1971 Sep;107(3):712–717. doi: 10.1128/jb.107.3.712-717.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Repaske R., Repaske A. C., Mayer R. D. Carbon dioxide control of lag period and growth of Streptococcus sanguis. J Bacteriol. 1974 Feb;117(2):652–659. doi: 10.1128/jb.117.2.652-659.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Silver R. S., Mateles R. I. Control of mixed-substrate utilization in continuous cultures of Escherichia coli. J Bacteriol. 1969 Feb;97(2):535–543. doi: 10.1128/jb.97.2.535-543.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Srivastava V. S., MacLeod R. A. Nutritional requirements of some marine luminous bacteria. Can J Microbiol. 1971 May;17(5):703–711. doi: 10.1139/m71-113. [DOI] [PubMed] [Google Scholar]
- THEODORE T. S., ENGLESBERG E. MUTANT OF SALMONELLA TYPHIMURIUM DEFICIENT IN THE CARBON DIOXIDE-FIXING ENZYME PHOSPHOENOLPYRUVIC CARBOXYLASE. J Bacteriol. 1964 Oct;88:946–955. doi: 10.1128/jb.88.4.946-955.1964. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tabatabai L. B., Walker H. W. Oxidation-reduction potential and growth of Clostridium perfringens and Pseudomonas fluorescens. Appl Microbiol. 1970 Sep;20(3):441–446. doi: 10.1128/am.20.3.441-446.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wood H. G., Werkman C. H. The relationship of bacterial utilization of CO(2) to succinic acid formation. Biochem J. 1940 Feb;34(2):129–138. doi: 10.1042/bj0340129. [DOI] [PMC free article] [PubMed] [Google Scholar]
