Abstract
Polyurethane-immobilized Flavobacterium cells (ATCC 39723) degraded pentachlorophenol (PCP) at initial concentrations as high as 300 mg liter-1. The reversible binding of PCP to the polyurethane was shown to be important in the protection of the cells from inhibition of PCP degradation. The degradation activity of the bacteria was monitored for 150 days in semicontinuous batch reactors. The degradation rate dropped by about 0.6% per day. PCP was degraded in a continuous-culture bioreactor at a rate of 3.5 to 4 mg g of foam-1 day-1 for 25 days. Electron micrographs of the polyurethane suggested that the cells were entrapped within 50- to 500-microns-diameter pockets in the foam.
Full text
PDF





Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Asjö B., Fenyö E. M., Klein G. Moloney virus (M-MuLV) leukemogenesis: virus spread, antibody production and antigenic expression in neonatally virus-inoculated young mice. Int J Cancer. 1981 Jul 15;28(1):65–70. doi: 10.1002/ijc.2910280112. [DOI] [PubMed] [Google Scholar]
- Brown E. J., Pignatello J. J., Martinson M. M., Crawford R. L. Pentachlorophenol degradation: a pure bacterial culture and an epilithic microbial consortium. Appl Environ Microbiol. 1986 Jul;52(1):92–97. doi: 10.1128/aem.52.1.92-97.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chu J. P., Kirsch E. J. Metabolism of pentachlorophenol by an axenic bacterial culture. Appl Microbiol. 1972 May;23(5):1033–1035. doi: 10.1128/am.23.5.1033-1035.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dwyer D. F., Krumme M. L., Boyd S. A., Tiedje J. M. Kinetics of phenol biodegradation by an immobilized methanogenic consortium. Appl Environ Microbiol. 1986 Aug;52(2):345–351. doi: 10.1128/aem.52.2.345-351.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fusee M. C., Swann W. E., Calton G. J. Immobilization of Escherichia coli Cells Containing Aspartase Activity with Polyurethane and Its Application for l-Aspartic Acid Production. Appl Environ Microbiol. 1981 Oct;42(4):672–676. doi: 10.1128/aem.42.4.672-676.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Linko P., Poutanen K., Weckstrom L. Preparation and kinetic behavior of immobilized whole cell biocatalysts. Biochimie. 1980;62(5-6):387–394. doi: 10.1016/s0300-9084(80)80170-2. [DOI] [PubMed] [Google Scholar]
- O'Reilly K. T., Crawford R. L. Kinetics of p-cresol degradation by an immobilized Pseudomonas sp. Appl Environ Microbiol. 1989 Apr;55(4):866–870. doi: 10.1128/aem.55.4.866-870.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pignatello J. J., Martinson M. M., Steiert J. G., Carlson R. E., Crawford R. L. Biodegradation and photolysis of pentachlorophenol in artificial freshwater streams. Appl Environ Microbiol. 1983 Nov;46(5):1024–1031. doi: 10.1128/aem.46.5.1024-1031.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Saber D. L., Crawford R. L. Isolation and characterization of Flavobacterium strains that degrade pentachlorophenol. Appl Environ Microbiol. 1985 Dec;50(6):1512–1518. doi: 10.1128/aem.50.6.1512-1518.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Topp E., Crawford R. L., Hanson R. S. Influence of readily metabolizable carbon on pentachlorophenol metabolism by a pentachlorophenol-degrading Flavobacterium sp. Appl Environ Microbiol. 1988 Oct;54(10):2452–2459. doi: 10.1128/aem.54.10.2452-2459.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
