Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1989 Sep;55(9):2372–2376. doi: 10.1128/aem.55.9.2372-2376.1989

Analysis of peptide metabolism by ruminal microorganisms.

R J Wallace 1, N McKain 1
PMCID: PMC203083  PMID: 2802611

Abstract

Methods were developed for the determination of oligoalanine and other short-chain peptides and peptide analogs in ruminal fluid by using reverse-phase high-pressure liquid chromatography. Chromatographic analysis of the breakdown of (Ala)3 and (Ala)4 in ruminal fluid in vitro revealed that the predominant mechanism of hydrolysis was a dipeptidyl peptidase-like activity. Hydrolysis proceeded from the N terminal of the peptide chain; N-acetyl-(Ala)3 was broken down at 11% of the rate of breakdown of (Ala)3 or (Ala)3-p-nitroanilide. (Ala)2-p-nitroanilide was hydrolyzed most rapidly of the arylamide substrates tested, but fluorogenic 4-methoxy-2-naphthylamide (MNA) compounds were more convenient and potentially more versatile substrates than p-nitroanilides. Gly-Arg-MNA was the most rapidly hydrolyzed dipeptidyl peptidase substrate, suggesting that ruminal peptidase activity was predominantly of a type I specificity.

Full text

PDF
2372

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Brock F. M., Forsberg C. W., Buchanan-Smith J. G. Proteolytic activity of rumen microorganisms and effects of proteinase inhibitors. Appl Environ Microbiol. 1982 Sep;44(3):561–569. doi: 10.1128/aem.44.3.561-569.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Chen G., Russell J. B., Sniffen C. J. A procedure for measuring peptides in rumen fluid and evidence that peptide uptake can be a rate-limiting step in ruminal protein degradation. J Dairy Sci. 1987 Jun;70(6):1211–1219. doi: 10.3168/jds.S0022-0302(87)80133-9. [DOI] [PubMed] [Google Scholar]
  3. Chen G., Strobel H. J., Russell J. B., Sniffen C. J. Effect of hydrophobicity of utilization of peptides by ruminal bacteria in vitro. Appl Environ Microbiol. 1987 Sep;53(9):2021–2025. doi: 10.1128/aem.53.9.2021-2025.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Fukasawa K. M., Harada M. Purification and properties of dipeptidyl peptidase IV from Streptococcus mitis ATCC 9811. Arch Biochem Biophys. 1981 Aug;210(1):230–237. doi: 10.1016/0003-9861(81)90184-3. [DOI] [PubMed] [Google Scholar]
  5. Lee H. J., LaRue J. N., Wilson I. B. Dipeptidyl carboxypeptidase from Coryne bacterium equi. Biochim Biophys Acta. 1971 Dec 15;250(3):608–613. doi: 10.1016/0005-2744(71)90266-x. [DOI] [PubMed] [Google Scholar]
  6. Leng R. A., Nolan J. V. Nitrogen metabolism in the rumen. J Dairy Sci. 1984 May;67(5):1072–1089. doi: 10.3168/jds.S0022-0302(84)81409-5. [DOI] [PubMed] [Google Scholar]
  7. Payne J. W. Peptide transport in bacteria: methods, mutants and energy coupling. Biochem Soc Trans. 1983 Dec;11(6):794–798. doi: 10.1042/bst0110794. [DOI] [PubMed] [Google Scholar]
  8. Perrett D., Webb J. P., Silk D. B., Clark M. L. The assay of dipeptides using fluorescamine and its application to determining dipeptidase activity. Anal Biochem. 1975 Sep;68(1):161–166. doi: 10.1016/0003-2697(75)90690-9. [DOI] [PubMed] [Google Scholar]
  9. Pittman K. A., Lakshmanan S., Bryant M. P. Oligopeptide uptake by Bacteroides ruminicola. J Bacteriol. 1967 May;93(5):1499–1508. doi: 10.1128/jb.93.5.1499-1508.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Prins R. A., van Hal-Van Gestel J. C., Counotte G. H. Degradation of amino acids and peptides by mixed rumen micro-organisms. Z Tierphysiol Tierernahr Futtermittelkd. 1979 Dec;42(6):333–339. doi: 10.1111/j.1439-0396.1979.tb01226.x. [DOI] [PubMed] [Google Scholar]
  11. Russell J. B. Fermentation of Peptides by Bacteroides ruminicola B(1)4. Appl Environ Microbiol. 1983 May;45(5):1566–1574. doi: 10.1128/aem.45.5.1566-1574.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Russell J. B., Sniffen C. J., Van Soest P. J. Effect of carbohydrate limitation on degradation and utilization of casein by mixed rumen bacteria. J Dairy Sci. 1983 Apr;66(4):763–775. doi: 10.3168/jds.S0022-0302(83)81856-6. [DOI] [PubMed] [Google Scholar]
  13. Wallace R. J., Kopecny J. Breakdown of diazotized proteins and synthetic substrates by rumen bacterial proteases. Appl Environ Microbiol. 1983 Jan;45(1):212–217. doi: 10.1128/aem.45.1.212-217.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Whitelaw F. G., Bruce L. A., Eadie J. M., Shand W. J. 2-Aminoethylphosphonic acid concentrations in some rumen ciliate protozoa. Appl Environ Microbiol. 1983 Oct;46(4):951–953. doi: 10.1128/aem.46.4.951-953.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Wright D. E. Metabolism of peptides by rumen microorganisms. Appl Microbiol. 1967 May;15(3):547–550. doi: 10.1128/am.15.3.547-550.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Yaron A., Mlynar D., Berger A. A dipeptidocarboxypeptidase from E. coli. Biochem Biophys Res Commun. 1972 May 26;47(4):897–902. doi: 10.1016/0006-291x(72)90577-3. [DOI] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES