Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1989 Sep;55(9):2414–2415. doi: 10.1128/aem.55.9.2414-2415.1989

Convenient preparative synthesis of [14C]trehalose from [14C]glucose by intact Escherichia coli cells.

B Brand 1, W Boos 1
PMCID: PMC203091  PMID: 2679387

Abstract

At high osmolarity, Escherichia coli synthesizes trehalose intracellularly, irrespective of the nature of the carbon source. Synthesis proceeds via the transfer of UDP-glucose to glucose 6-phosphate, yielding trehalose 6-phosphate, followed by its dephosphorylation to trehalose (H.M. Giaeyer, B.O. Styrvold, I. Kaasen, and A.R. Strøm, J. Bacteriol. 170:2841-2849, 1988). This reaction was exploited to preparatively synthesize [14C]trehalose from exogenous [14C]glucose by using intact bacteria of a mutant (DF214) that could not metabolize glucose. The total yield of radiochemically pure trehalose from glucose was routinely more than 50%.

Full text

PDF
2414

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Boos W., Ehmann U., Bremer E., Middendorf A., Postma P. Trehalase of Escherichia coli. Mapping and cloning of its structural gene and identification of the enzyme as a periplasmic protein induced under high osmolarity growth conditions. J Biol Chem. 1987 Sep 25;262(27):13212–13218. [PubMed] [Google Scholar]
  2. Clark D. P. Mutant of Escherichia coli deficient in osmoregulation of periplasmic oligosaccharide synthesis. J Bacteriol. 1985 Mar;161(3):1049–1053. doi: 10.1128/jb.161.3.1049-1053.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Ehrmann M., Boos W. Identification of endogenous inducers of the mal regulon in Escherichia coli. J Bacteriol. 1987 Aug;169(8):3539–3545. doi: 10.1128/jb.169.8.3539-3545.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Giaever H. M., Styrvold O. B., Kaasen I., Strøm A. R. Biochemical and genetic characterization of osmoregulatory trehalose synthesis in Escherichia coli. J Bacteriol. 1988 Jun;170(6):2841–2849. doi: 10.1128/jb.170.6.2841-2849.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Kennedy E. P. Osmotic regulation and the biosynthesis of membrane-derived oligosaccharides in Escherichia coli. Proc Natl Acad Sci U S A. 1982 Feb;79(4):1092–1095. doi: 10.1073/pnas.79.4.1092. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Kumar A., Larsen C. E., Preiss J. Biosynthesis of bacterial glycogen. Primary structure of Escherichia coli ADP-glucose:alpha-1,4-glucan, 4-glucosyltransferase as deduced from the nucleotide sequence of the glgA gene. J Biol Chem. 1986 Dec 5;261(34):16256–16259. [PubMed] [Google Scholar]
  7. Maréchal L. R. Transport and metabolism of trehalose in Escherichia coli and Salmonella typhimurium. Arch Microbiol. 1984 Jan;137(1):70–73. doi: 10.1007/BF00425810. [DOI] [PubMed] [Google Scholar]
  8. Schulman H., Kennedy E. P. Identification of UDP-glucose as an intermediate in the biosynthesis of the membrane-derived oligosaccharides of Escherichia coli. J Biol Chem. 1977 Sep 25;252(18):6299–6303. [PubMed] [Google Scholar]
  9. Thevelein J. M. Regulation of trehalose mobilization in fungi. Microbiol Rev. 1984 Mar;48(1):42–59. doi: 10.1128/mr.48.1.42-59.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Vinopal R. T., Hillman J. D., Schulman H., Reznikoff W. S., Fraenkel D. G. New phosphoglucose isomerase mutants of Escherichia coli. J Bacteriol. 1975 Jun;122(3):1172–1174. doi: 10.1128/jb.122.3.1172-1174.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES