Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1989 Oct;55(10):2556–2560. doi: 10.1128/aem.55.10.2556-2560.1989

Alteration of the catalytic efficiency of penicillin amidase from Escherichia coli.

L J Forney 1, D C Wong 1
PMCID: PMC203121  PMID: 2690734

Abstract

Ampicillin and cephalexin are beta-lactam antibiotics that are synthesized by the condensation of D-(-)-alpha-aminophenylacetic acid with 6-aminopenicillanic acid or 7-aminodeacetoxycephalosporanic acid, respectively. The rates at which the penicillin amidase of Escherichia coli catalyzes these reactions are too low to be of practical use. The objective of this study was to determine whether it is possible to alter the substrate specificity of penicillin amidase and select enzymes that efficiently hydrolyze substrates with alpha-aminophenylacetyl moieties at low pH, at which the alpha-amino group is nearly completely protonated. In this study, D-(-)-alpha-aminophenylacetyl-(L)-leucine (APAL) was used as a substrate analog of ampicillin and cephalexin. The gene for the penicillin amidase of E. coli ATCC 11105 was cloned and transferred to a leucine auxotroph of E. coli; numerous amidase mutants were selected by their ability to cleave APAL and provide leucine for growth in low-pH medium. The plasmid encoding one of the mutant amidases (pA135) was used to transform naive cells, and transformants that expressed the mutant amidase were shown to grow more rapidly in medium at pH 6.5 containing 0.1 mM APAL as the sole leucine source than did cells with the wild-type amidase. The mutant amidase was purified, and the second-order rate constant (kcat/Km) for APAL hydrolysis at pH 6.5 was found to be 10-fold greater than the rate observed with the wild-type enzyme. The difference between the rates of APAL hydrolysis by the mutant and wild-type amidases increased as the pH of the reactions decreased.(ABSTRACT TRUNCATED AT 250 WORDS)

Full text

PDF
2556

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Balasingham K., Warburton D., Dunnill P., Lilly M. D. The isolation and kinetics of penicillin amidase from Escherichia coli. Biochim Biophys Acta. 1972 Jul 13;276(1):250–256. doi: 10.1016/0005-2744(72)90027-7. [DOI] [PubMed] [Google Scholar]
  2. Bruns W., Hoppe J., Tsai H., Brüning H. J., Maywald F., Collins J., Mayer H. Structure of the penicillin acylase gene from Escherichia coli: a periplasmic enzyme that undergoes multiple proteolytic processing. J Mol Appl Genet. 1985;3(1):36–44. [PubMed] [Google Scholar]
  3. Chang A. C., Cohen S. N. Construction and characterization of amplifiable multicopy DNA cloning vehicles derived from the P15A cryptic miniplasmid. J Bacteriol. 1978 Jun;134(3):1141–1156. doi: 10.1128/jb.134.3.1141-1156.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Echols H., Lu C., Burgers P. M. Mutator strains of Escherichia coli, mutD and dnaQ, with defective exonucleolytic editing by DNA polymerase III holoenzyme. Proc Natl Acad Sci U S A. 1983 Apr;80(8):2189–2192. doi: 10.1073/pnas.80.8.2189. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Fierke C. A., Johnson K. A., Benkovic S. J. Construction and evaluation of the kinetic scheme associated with dihydrofolate reductase from Escherichia coli. Biochemistry. 1987 Jun 30;26(13):4085–4092. doi: 10.1021/bi00387a052. [DOI] [PubMed] [Google Scholar]
  6. Forney L. J., Wong D. C., Ferber D. M. Selection of amidases with novel substrate specificities from penicillin amidase of Escherichia coli. Appl Environ Microbiol. 1989 Oct;55(10):2550–2555. doi: 10.1128/aem.55.10.2550-2555.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Fowler R. G., Degnen G. E., Cox E. C. Mutational specificity of a conditional Escherichia coli mutator, mutD5. Mol Gen Genet. 1974;133(3):179–191. doi: 10.1007/BF00267667. [DOI] [PubMed] [Google Scholar]
  8. Hanahan D. Studies on transformation of Escherichia coli with plasmids. J Mol Biol. 1983 Jun 5;166(4):557–580. doi: 10.1016/s0022-2836(83)80284-8. [DOI] [PubMed] [Google Scholar]
  9. Kutzbach C., Rauenbusch E. Preparation and general properties of crystalline penicillin acylase from Escherichia coli ATCC 11 105. Hoppe Seylers Z Physiol Chem. 1974 Jan;355(1):45–53. doi: 10.1515/bchm2.1974.355.1.45. [DOI] [PubMed] [Google Scholar]
  10. Margolin A. L., Svedas V. K., Berezin I. V. Substrate specificity of penicillin amidase from E. coli. Biochim Biophys Acta. 1980 Dec 4;616(2):283–289. doi: 10.1016/0005-2744(80)90145-x. [DOI] [PubMed] [Google Scholar]
  11. Schumacher G., Sizmann D., Haug H., Buckel P., Böck A. Penicillin acylase from E. coli: unique gene-protein relation. Nucleic Acids Res. 1986 Jul 25;14(14):5713–5727. doi: 10.1093/nar/14.14.5713. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Siewiński M., Kuropatwa M., Szewczuk A. Phenylalkylsulfonyl derivatives as covalent inhibitors of penicillin amidase. Hoppe Seylers Z Physiol Chem. 1984 Aug;365(8):829–837. doi: 10.1515/bchm2.1984.365.2.829. [DOI] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES