Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1989 Nov;55(11):2739–2744. doi: 10.1128/aem.55.11.2739-2744.1989

Inducible Secretion of a Cellulase from Clostridium thermocellum in Bacillus subtilis

Gwennael Joliff 1, Alex Edelman 1, Andre Klier 1, Georges Rapoport 1,*
PMCID: PMC203162  PMID: 16348042

Abstract

A host-vector system for inducible secretion during the logarithmic growth phase in Bacillus subtilis has been developed. The B. subtilis levansucrase gene promoter and the region encoding its signal sequence have been used. The endoglucanase A of Clostridium thermocellum was used as a model protein to test the efficiency of the system. Effective inducible secretion of the endoglucanase A was observed when either the levansucrase signal sequence or its own signal sequence was used. Expression of the endoglucanase A in different genetic backgrounds of B. subtilis showed that its regulation was similar to that of levansucrase, and high enzyme activity was recovered from the culture supernatant of a hyperproducing B. subtilis sacU(Hy) strain. The molecular weight of 46,000 estimated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the secreted endoglucanase A is compatible with the calculated molecular weight of the mature polypeptide.

Full text

PDF
2739

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Amory A., Kunst F., Aubert E., Klier A., Rapoport G. Characterization of the sacQ genes from Bacillus licheniformis and Bacillus subtilis. J Bacteriol. 1987 Jan;169(1):324–333. doi: 10.1128/jb.169.1.324-333.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Anagnostopoulos C., Spizizen J. REQUIREMENTS FOR TRANSFORMATION IN BACILLUS SUBTILIS. J Bacteriol. 1961 May;81(5):741–746. doi: 10.1128/jb.81.5.741-746.1961. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Aymerich S., Gonzy-Tréboul G., Steinmetz M. 5'-noncoding region sacR is the target of all identified regulation affecting the levansucrase gene in Bacillus subtilis. J Bacteriol. 1986 Jun;166(3):993–998. doi: 10.1128/jb.166.3.993-998.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Beguin P., Cornet P., Millet J. Identification of the endoglucanase encoded by the celB gene of Clostridium thermocellum. Biochimie. 1983 Aug-Sep;65(8-9):495–500. doi: 10.1016/s0300-9084(83)80131-x. [DOI] [PubMed] [Google Scholar]
  5. Béguin P., Cornet P., Aubert J. P. Sequence of a cellulase gene of the thermophilic bacterium Clostridium thermocellum. J Bacteriol. 1985 Apr;162(1):102–105. doi: 10.1128/jb.162.1.102-105.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Béguin P. Detection of cellulase activity in polyacrylamide gels using Congo red-stained agar replicas. Anal Biochem. 1983 Jun;131(2):333–336. doi: 10.1016/0003-2697(83)90178-1. [DOI] [PubMed] [Google Scholar]
  7. Béguin P., Rocancourt M., Chebrou M. C., Aubert J. P. Mapping of mRNA encoding endoglucanase A from Clostridium thermocellum. Mol Gen Genet. 1986 Feb;202(2):251–254. doi: 10.1007/BF00331645. [DOI] [PubMed] [Google Scholar]
  8. Carter P., Bedouelle H., Winter G. Improved oligonucleotide site-directed mutagenesis using M13 vectors. Nucleic Acids Res. 1985 Jun 25;13(12):4431–4443. doi: 10.1093/nar/13.12.4431. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Cohen S. N., Chang A. C., Hsu L. Nonchromosomal antibiotic resistance in bacteria: genetic transformation of Escherichia coli by R-factor DNA. Proc Natl Acad Sci U S A. 1972 Aug;69(8):2110–2114. doi: 10.1073/pnas.69.8.2110. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Horinouchi S., Weisblum B. Nucleotide sequence and functional map of pC194, a plasmid that specifies inducible chloramphenicol resistance. J Bacteriol. 1982 May;150(2):815–825. doi: 10.1128/jb.150.2.815-825.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Klier A., Fouet A., Débarbouillé M., Kunst F., Rapoport G. Distinct control sites located upstream from the levansucrase gene of Bacillus subtilis. Mol Microbiol. 1987 Sep;1(2):233–241. doi: 10.1111/j.1365-2958.1987.tb00517.x. [DOI] [PubMed] [Google Scholar]
  12. Kunst F., Pascal M., Lepesant-Kejzlarova J., Lepesant J. A., Billault A., Dedonder R. Pleiotropic mutations affecting sporulation conditions and the syntheses of extracellular enzymes in Bacillus subtilis 168. Biochimie. 1974;56(11-12):1481–1489. doi: 10.1016/s0300-9084(75)80270-7. [DOI] [PubMed] [Google Scholar]
  13. Lepesant J. A., Kunst F., Lepesant-Kejzlarová J., Dedonder R. Chromosomal location of mutations affecting sucrose metabolism in Bacillus subtilis Marburg. Mol Gen Genet. 1972;118(2):135–160. doi: 10.1007/BF00267084. [DOI] [PubMed] [Google Scholar]
  14. Petre J., Longin R., Millet J. Purification and properties of an endo-beta-1,4-glucanase from Clostridium thermocellum. Biochimie. 1981 Jul;63(7):629–639. doi: 10.1016/s0300-9084(81)80061-2. [DOI] [PubMed] [Google Scholar]
  15. Pétré D., Millet J., Longin R., Béguin P., Girard H., Aubert J. P. Purification and properties of the endoglucanase C of Clostridium thermocellum produced in Escherichia coli. Biochimie. 1986 May;68(5):687–695. doi: 10.1016/s0300-9084(86)80162-6. [DOI] [PubMed] [Google Scholar]
  16. Robson L. M., Chambliss G. H. Characterization of the cellulolytic activity of a Bacillus isolate. Appl Environ Microbiol. 1984 May;47(5):1039–1046. doi: 10.1128/aem.47.5.1039-1046.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Sacco M., Millet J., Aubert J. P. Cloning and expression in Saccharomyces cerevisiae of a cellulase gene from Clostridium thermocellum. Ann Microbiol (Paris) 1984 May-Jun;135A(3):485–488. doi: 10.1016/s0769-2609(84)80088-5. [DOI] [PubMed] [Google Scholar]
  18. Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Sarvas M. Protein secretion in bacilli. Curr Top Microbiol Immunol. 1986;125:103–125. doi: 10.1007/978-3-642-71251-7_8. [DOI] [PubMed] [Google Scholar]
  20. Saunders C. W., Schmidt B. J., Mallonee R. L., Guyer M. S. Secretion of human serum albumin from Bacillus subtilis. J Bacteriol. 1987 Jul;169(7):2917–2925. doi: 10.1128/jb.169.7.2917-2925.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Schwarz W. H., Gräbnitz F., Staudenbauer W. L. Properties of a Clostridium thermocellum Endoglucanase Produced in Escherichia coli. Appl Environ Microbiol. 1986 Jun;51(6):1293–1299. doi: 10.1128/aem.51.6.1293-1299.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Soutschek-Bauer E., Staudenbauer W. L. Synthesis and secretion of a heat-stable carboxymethylcellulose from Clostridium thermocellum in Bacillus subtilis and Bacillus stearothermophilus. Mol Gen Genet. 1987 Jul;208(3):537–541. doi: 10.1007/BF00328152. [DOI] [PubMed] [Google Scholar]
  23. Steinmetz M., Le Coq D., Aymerich S., Gonzy-Tréboul G., Gay P. The DNA sequence of the gene for the secreted Bacillus subtilis enzyme levansucrase and its genetic control sites. Mol Gen Genet. 1985;200(2):220–228. doi: 10.1007/BF00425427. [DOI] [PubMed] [Google Scholar]
  24. Trieu-Cuot P., Courvalin P. Nucleotide sequence of the Streptococcus faecalis plasmid gene encoding the 3'5"-aminoglycoside phosphotransferase type III. Gene. 1983 Sep;23(3):331–341. doi: 10.1016/0378-1119(83)90022-7. [DOI] [PubMed] [Google Scholar]
  25. Vasantha N., Thompson L. D. Fusion of pro region of subtilisin to staphylococcal protein A and its secretion by Bacillus subtilis. Gene. 1986;49(1):23–28. doi: 10.1016/0378-1119(86)90382-3. [DOI] [PubMed] [Google Scholar]
  26. Vieira J., Messing J. The pUC plasmids, an M13mp7-derived system for insertion mutagenesis and sequencing with synthetic universal primers. Gene. 1982 Oct;19(3):259–268. doi: 10.1016/0378-1119(82)90015-4. [DOI] [PubMed] [Google Scholar]
  27. Wang L. F., Wong S. L., Lee S. G., Kalyan N. K., Hung P. P., Hilliker S., Doi R. H. Expression and secretion of human atrial natriuretic alpha-factor in Bacillus subtilis using the subtilisin signal peptide. Gene. 1988 Sep 15;69(1):39–47. doi: 10.1016/0378-1119(88)90376-9. [DOI] [PubMed] [Google Scholar]
  28. Zukowski M. M., Miller L. Hyperproduction of an intracellular heterologous protein in a sacUh mutant of Bacillus subtilis. Gene. 1986;46(2-3):247–255. doi: 10.1016/0378-1119(86)90409-9. [DOI] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES