Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1989 Nov;55(11):2789–2792. doi: 10.1128/aem.55.11.2789-2792.1989

Most-probable-number procedures for enumerating ruminal bacteria, including the simultaneous estimation of total and cellulolytic numbers in one medium.

B A Dehority 1, P A Tirabasso 1, A P Grifo Jr 1
PMCID: PMC203169  PMID: 2624460

Abstract

Based on results from eight experiments, no overall difference was found between roll tube and three- and five-tube most-probable-number (MPN) methods for estimating total numbers of ruminal bacteria. However, standard errors for the replicate means within an experiment were higher with the MPN procedures. Visual growth and pH were the criteria used for scoring the MPN tubes. Total numbers were significantly higher in MPN medium containing 40% ruminal fluid, as compared with a complete medium without ruminal fluid. By using a broth medium containing ball-milled cellulose and soluble carbohydrates as energy sources, it was possible to estimate both total and cellulolytic ruminal bacterial numbers in the same MPN series. Disappearance of cellulose and decrease in pH were used to determine growth. Values did not differ from those obtained in separate MPN assays. By using this method, diurnal changes in total and cellulolytic bacterial numbers were estimated in sheep fed forage or a concentrate-type diet.

Full text

PDF
2789

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bryant M. P., Robinson I. M. Effects of diet, time after feeding, and position sampled on numbers of viable bacteria in the bovine rumen. J Dairy Sci. 1968 Dec;51(12):1950–1955. doi: 10.3168/jds.S0022-0302(68)87320-5. [DOI] [PubMed] [Google Scholar]
  2. COCHRAN W. G. Estimation of bacterial densities by means of the "most probable number". Biometrics. 1950 Jun;6(2):105–116. [PubMed] [Google Scholar]
  3. Caldwell D. R., Bryant M. P. Medium without rumen fluid for nonselective enumeration and isolation of rumen bacteria. Appl Microbiol. 1966 Sep;14(5):794–801. doi: 10.1128/am.14.5.794-801.1966. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Dehority B. A. Pectin-fermenting bacteria isolated from the bovine rumen. J Bacteriol. 1969 Jul;99(1):189–196. doi: 10.1128/jb.99.1.189-196.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Fonty G., Gouet P., Jouany J. P., Senaud J. Ecological factors determining establishment of cellulolytic bacteria and protozoa in the rumens of meroxenic lambs. J Gen Microbiol. 1983 Jan;129(1):213–223. doi: 10.1099/00221287-129-1-213. [DOI] [PubMed] [Google Scholar]
  6. Grubb J. A., Dehority B. A. Variation in colony counts of total viable anaerobic rumen bacteria as influenced by media and cultural methods. Appl Environ Microbiol. 1976 Feb;31(2):262–267. doi: 10.1128/aem.31.2.262-267.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Hiltner P., Dehority B. A. Effect of soluble carbohydrates on digestion of cellulose by pure cultures of rumen bacteria. Appl Environ Microbiol. 1983 Sep;46(3):642–648. doi: 10.1128/aem.46.3.642-648.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Leedle J. A., Bryant M. P., Hespell R. B. Diurnal variations in bacterial numbers and fluid parameters in ruminal contents of animals fed low- or high-forage diets. Appl Environ Microbiol. 1982 Aug;44(2):402–412. doi: 10.1128/aem.44.2.402-412.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Macy J. M., Farrand J. R., Montgomery L. Cellulolytic and non-cellulolytic bacteria in rat gastrointestinal tracts. Appl Environ Microbiol. 1982 Dec;44(6):1428–1434. doi: 10.1128/aem.44.6.1428-1434.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Orpin C. G., Mathiesen S. D., Greenwood Y., Blix A. S. Seasonal changes in the ruminal microflora of the high-arctic Svalbard reindeer (Rangifer tarandus platyrhynchus). Appl Environ Microbiol. 1985 Jul;50(1):144–151. doi: 10.1128/aem.50.1.144-151.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Shockey W. L., Dehority B. A. Comparison of two methods for enumeration of anaerobe numbers on forages and evaluation of ethylene oxide treatment for forage sterilization. Appl Environ Microbiol. 1989 Jul;55(7):1766–1768. doi: 10.1128/aem.55.7.1766-1768.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Varel V. H., Pond W. G. Enumeration and activity of cellulolytic bacteria from gestating swine fed various levels of dietary fiber. Appl Environ Microbiol. 1985 Apr;49(4):858–862. doi: 10.1128/aem.49.4.858-862.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Warner A. C. Diurnal changes in the concentrations of micro-organisms in the rumens of sheep fed limited diets once daily. J Gen Microbiol. 1966 Nov;45(2):213–235. doi: 10.1099/00221287-45-2-213. [DOI] [PubMed] [Google Scholar]
  14. Wedekind K. J., Mansfield H. R., Montgomery L. Enumeration and isolation of cellulolytic and hemicellulolytic bacteria from human feces. Appl Environ Microbiol. 1988 Jun;54(6):1530–1535. doi: 10.1128/aem.54.6.1530-1535.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES