Skip to main content
The American Journal of Pathology logoLink to The American Journal of Pathology
. 1977 Apr;87(1):205–225.

Canine hyperlipoproteinemia and atherosclerosis. Accumulation of lipid by aortic medial cells in vivo and in vitro.

R W Mahley, T L Innerarity, K H Weisgraber, D L Fry
PMCID: PMC2032077  PMID: 192082

Abstract

Dogs maintained for 1 year on a semisynthetic diet containing hydrogenated coconut oil and cholesterol developed hypercholesterolemia. In those cases where plasma cholesterol levels exceeded 750 mg/100 ml, the animals also developed severe atherosclerosis. This atherogenic hyperlipoproteinemia was characterized by the presence of beta very low density lipoproteins (B-VLDL), increased levels of low density lipoproteins (LDL), and the occurrence of the HDLc lipoproteins. In all of these cholesterol-rich lipoproteins the arginine-rich apoprotein (ARP) was prominent. Moreover, the HDLc (d = 1.006-1.02) contained the ARP as the only detectable apoprotein. The atherosclerosis involved the abdominal aorta, coronary and cerebrovascular arteries, and many of the peripheral arteries. Histologically, the aortic lesions were characterized by a variable intimal proliferative response and extensive medial lipid deposition. In the peripheral, coronary, and cerebral arteries, the lesions were more extensive and involved primarily the media of the vessel wall, with little intimal reaction in many cases. The correlation between the in vivo disease process and the response of aortic smooth muscle cells (SMC) grown in tissue culture to the various cholesterol-induced lipoproteins was examined. B-VLDL, LDL, and HDLc (but not HDL2) caused a marked accumulation of free and esterified cholesterol in the SMC. The cholesterol accumulation was found to be more extensive in canine SMC than in swine smooth muscle cells or smooth muscle cells of other species in response to a similar lipoprotein cholesterol concentration. The enhanced sterol uptake appeared to be a property of canine smooth muscle cells rather than a property of the canine lipoproteins. These in vitro results may be related to the observed propensity for the development of medical disease that was demonstrated in the in vivo studies.

Full text

PDF
205

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ABEL L. L., LEVY B. B., BRODIE B. B., KENDALL F. E. A simplified method for the estimation of total cholesterol in serum and demonstration of its specificity. J Biol Chem. 1952 Mar;195(1):357–366. [PubMed] [Google Scholar]
  2. Benson J. V., Jr, Patterson J. A. Accelerated chromatographic analysis of amino acids commonly found in physiological fluids on a spherical resin of specific design. Anal Biochem. 1965 Nov;13(2):265–280. doi: 10.1016/0003-2697(65)90196-x. [DOI] [PubMed] [Google Scholar]
  3. Bersot T. P., Mahley R. W., Brown M. S., Goldstein J. L. Interaction of swine lipoproteins with the low density lipoprotein receptor in human fibroblasts. J Biol Chem. 1976 Apr 25;251(8):2395–2398. [PubMed] [Google Scholar]
  4. Brown B. G., Mahley R., Assmann G. Swine aortic smooth muscle in tissue culture. Some effects of purified swine lipoproteins on cell growth and morphology. Circ Res. 1976 Sep;39(3):415–424. doi: 10.1161/01.res.39.3.415. [DOI] [PubMed] [Google Scholar]
  5. Brown M. S., Faust J. R., Goldstein J. L. Role of the low density lipoprotein receptor in regulating the content of free and esterified cholesterol in human fibroblasts. J Clin Invest. 1975 Apr;55(4):783–793. doi: 10.1172/JCI107989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Butkus A., Robertson A. L., Ehrhart L. A., Lewis L. A. Aortic lipids at different stages of canine experimental arteriosclerosis. Exp Mol Pathol. 1972 Jun;16(3):311–325. doi: 10.1016/0014-4800(72)90007-x. [DOI] [PubMed] [Google Scholar]
  7. Fletcher M. J. A colorimetric method for estimating serum triglycerides. Clin Chim Acta. 1968 Nov;22(3):393–397. doi: 10.1016/0009-8981(68)90041-7. [DOI] [PubMed] [Google Scholar]
  8. GEER J. C. FINE STRUCTURE OF CANINE EXPERIMENTAL ATHEROSCLEROSIS. Am J Pathol. 1965 Aug;47:241–269. [PMC free article] [PubMed] [Google Scholar]
  9. HAVEL R. J., EDER H. A., BRAGDON J. H. The distribution and chemical composition of ultracentrifugally separated lipoproteins in human serum. J Clin Invest. 1955 Sep;34(9):1345–1353. doi: 10.1172/JCI103182. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. HOLMAN R. L., McGILL H. C., Jr, STRONG J. P., GEER J. C. Technics for studying atherosclerotic lesions. Lab Invest. 1958 Jan-Feb;7(1):42–47. [PubMed] [Google Scholar]
  11. Havel R. J., Kane J. P. Primary dysbetalipoproteinemia: predominance of a specific apoprotein species in triglyceride-rich lipoproteins. Proc Natl Acad Sci U S A. 1973 Jul;70(7):2015–2019. doi: 10.1073/pnas.70.7.2015. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Keutmann H. T., Potts J. T., Jr Improved recovery of methionine after acid hydrolysis using mercaptoethanol. Anal Biochem. 1969 May;29(2):175–185. doi: 10.1016/0003-2697(69)90300-5. [DOI] [PubMed] [Google Scholar]
  13. Kritchevsky D., Davidson L. M., Shapiro I. L., Kim H. K., Kitagawa M., Malhotra S., Nair P. P., Clarkson T. B., Bersohn I., Winter P. A. Lipid metabolism and experimental atherosclerosis in baboons: influence of cholesterol-free, semi-synthetic diets. Am J Clin Nutr. 1974 Jan;27(1):29–50. doi: 10.1093/ajcn/27.1.29. [DOI] [PubMed] [Google Scholar]
  14. Kritchevsky D., Tepper S. A., Kim H. K., Moses D. E., Story J. A. Experimental atherosclerosis in rabbits fed cholesterol-free diets. 4. Investigation into the source of cholesteremia. Exp Mol Pathol. 1975 Feb;22(1):11–19. doi: 10.1016/0014-4800(75)90046-5. [DOI] [PubMed] [Google Scholar]
  15. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  16. Mahley R. W., Weisgraber K. H. An electrophoretic method for the quantitative isolation of human and swine plasma lipoproteins. Biochemistry. 1974 Apr 23;13(9):1964–1969. doi: 10.1021/bi00706a600. [DOI] [PubMed] [Google Scholar]
  17. Mahley R. W., Weisgraber K. H. Canine lipoproteins and atherosclerosis. I. Isolation and characterization of plasma lipoproteins from control dogs. Circ Res. 1974 Nov;35(5):713–721. doi: 10.1161/01.res.35.5.713. [DOI] [PubMed] [Google Scholar]
  18. Mahley R. W., Weisgraber K. H., Innerarity T. Atherogenic hyperlipoproteinemia induced by cholesterol feeding the Patas monkey. Biochemistry. 1976 Jul 13;15(14):2979–2985. doi: 10.1021/bi00659a007. [DOI] [PubMed] [Google Scholar]
  19. Mahley R. W., Weisgraber K. H., Innerarity T., Brewer H. B., Jr, Assmann G. Swine lipoproteins and atherosclerosis. Changes in the plasma lipoproteins and apoproteins induced by cholesterol feeding. Biochemistry. 1975 Jul;14(13):2817–2823. doi: 10.1021/bi00684a005. [DOI] [PubMed] [Google Scholar]
  20. Mahley R. W., Weisgraber K. H., Innerarity T., Brewer H. B., Jr Characterization of the plasma lipoproteins and apoproteins of the Erythrocebus patas monkey. Biochemistry. 1976 May 4;15(9):1928–1933. doi: 10.1021/bi00654a021. [DOI] [PubMed] [Google Scholar]
  21. Mahley R. W., Weisgraber K. H., Innerarity T. Canine lipoproteins and atherosclerosis. II. Characterization of the plasma lipoproteins associated with atherogenic and nonatherogenic hyperlipidemia. Circ Res. 1974 Nov;35(5):722–733. doi: 10.1161/01.res.35.5.722. [DOI] [PubMed] [Google Scholar]
  22. Mahley R., Nelson A. W., Ferrans V. J., Fry D. L. Thrombosis in association with atherosclerosis induced by dietary perturbations in dogs. Science. 1976 Jun 11;192(4244):1139–1141. doi: 10.1126/science.1273587. [DOI] [PubMed] [Google Scholar]
  23. McCullagh K. G., Ehrhart A., Butkus A. Experimental canine atherosclerosis and its prevention. The dietary induction of severe coronary, cerebral, aortic, and iliac atherosclerosis and its prevention by safflower oil. Lab Invest. 1976 Apr;34(4):394–405. [PubMed] [Google Scholar]
  24. McCullagh K. G., Ehrhart L. A. Increased arterial collagen synthesis in experimental canine atherosclerosis. Atherosclerosis. 1974 Jan-Feb;19(1):13–28. doi: 10.1016/0021-9150(74)90040-9. [DOI] [PubMed] [Google Scholar]
  25. Reisfeld R. A., Small P. A., Jr Electrophoretic heterogeneity of polypeptide chains of specific antibodies. Science. 1966 May 27;152(3726):1253–1255. doi: 10.1126/science.152.3726.1253. [DOI] [PubMed] [Google Scholar]
  26. Robertson A. L., Jr, Butkus A., Ehrhart L. A., Lewis L. A. Experimental arteriosclerosis in dogs. Evaluation of anatomopathological findings. Atherosclerosis. 1972 May-Jun;15(3):307–325. doi: 10.1016/0021-9150(72)90021-4. [DOI] [PubMed] [Google Scholar]
  27. Ross R. The smooth muscle cell. II. Growth of smooth muscle in culture and formation of elastic fibers. J Cell Biol. 1971 Jul;50(1):172–186. doi: 10.1083/jcb.50.1.172. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. SPERRY W. M., WEBB M. A revision of the Schoenheimer-Sperry method for cholesterol determination. J Biol Chem. 1950 Nov;187(1):97–106. [PubMed] [Google Scholar]
  29. STEPHENSON S. E., Jr, YOUNGER R., SCOTT H. W., Jr EFFECT OF 20 PER CENT CHOLESTEROL DIET ON SEGMENTAL EXPERIMENTAL ATHEROGENESIS. Am Surg. 1963 Jun;29:438–441. [PubMed] [Google Scholar]
  30. Shore V. G., Shore B., Hart R. G. Changes in apolipoproteins and properties of rabbit very low density lipoproteins on induction of cholesteremia. Biochemistry. 1974 Apr 9;13(8):1579–1585. doi: 10.1021/bi00705a004. [DOI] [PubMed] [Google Scholar]
  31. Weber K., Osborn M. The reliability of molecular weight determinations by dodecyl sulfate-polyacrylamide gel electrophoresis. J Biol Chem. 1969 Aug 25;244(16):4406–4412. [PubMed] [Google Scholar]
  32. ZILVERSMIT D. B., DAVIS A. K. Microdetermination of plasma phospholipids by trichloroacetic acid precipitation. J Lab Clin Med. 1950 Jan;35(1):155–160. [PubMed] [Google Scholar]

Articles from The American Journal of Pathology are provided here courtesy of American Society for Investigative Pathology

RESOURCES