Skip to main content
The American Journal of Pathology logoLink to The American Journal of Pathology
. 1977 Nov;89(2):277–296.

Endothelial Proliferation in Inflammation

I. Autoradiographic Studies Following Thermal Injury to the Skin of Normal Rats

Milton M Sholley, Tito Cavallo, Ramzi S Cotran
PMCID: PMC2032228  PMID: 920776

Abstract

Endothelial prolifertion was studied in sites of acute inflammation induced by necrotizing (60 C for 20 seconds) or mild (54 C for 20 seconds) thermal injury to the skin of rsts. DNA synthesis in endothelial cells was assayed 6 hours to 10 days following injury by quantitation of the 3H-thymidine labeling indices on 2-μ Epon section autoradiographs. In lesions induced at 60 C for 20 seconds, increase in DNA synthesis in small vessels around the necrotic tissue began at 1 day and became significant at 2 and 3 days (10 to 12% for endothelial cells, 9% for perivascular cells). This increased endothelial replication resulted in the formation of new blood vessels by 5 to 7 days. Endothelial labeling diminished progressively after 3 days, as the epidermis regenerated. Foci completely covered by new epidermis consistently showed lower labeling indices than those which were not reepithelialized. Mild thermal injury (54 C for 20 seconds) also resulted in significant increases in endothelial labeling (6%), but the labeling was present mainly in superficial vessels and was not followed by neovascularization. The findings with mild injury are consistent with data that vascular leakage from superficial vessels is due to direct, albeit delayed, endothelial damage. Electron microscopic studies confirmed labeling in endothelial cells and indicated that ultrastructural alterations that were previously ascribed to activation, recovery, or regenerative transformation of endothelium represent, in the main, endothelial proliferation.

Full text

PDF
277

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ASHTON N., COOK C. Mechanism of corneal vascularization. Br J Ophthalmol. 1953 Apr;37(4):193–209. doi: 10.1136/bjo.37.4.193. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. CARO L. G., VAN TUBERGEN R. P., KOLB J. A. High-resolution autoradiography. I. Methods. J Cell Biol. 1962 Nov;15:173–188. doi: 10.1083/jcb.15.2.173. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. CHASE H. B., MONTAGNA W., MALONE J. D. Changes in the skin in relation to the hair growth cycle. Anat Rec. 1953 May;116(1):75–81. doi: 10.1002/ar.1091160107. [DOI] [PubMed] [Google Scholar]
  4. COTRAN R. S., MAJNO G. A LIGHT AND ELECTRON MICROSCOPIC ANALYSIS OF VASCULAR INJURY. Ann N Y Acad Sci. 1964 Aug 27;116:750–764. doi: 10.1111/j.1749-6632.1964.tb52543.x. [DOI] [PubMed] [Google Scholar]
  5. COTRAN R. S., MAJNO G. THE DELAYED AND PROLONGED VASCULAR LEAKAGE IN INFLAMMATION. I. TOPOGRAPHY OF THE LEAKING VESSELS AFTER THERMAL INJURY. Am J Pathol. 1964 Aug;45:261–281. [PMC free article] [PubMed] [Google Scholar]
  6. COTRAN R. S. THE DELAYED AND PROLONGED VASCULAR LEAKAGE IN INFLAMMATION. II. AN ELECTRON MICROSCOPIC STUDY OF THE VASCULAR RESPONSE AFTER THERMAL INJURY. Am J Pathol. 1965 Apr;46:589–620. [PMC free article] [PubMed] [Google Scholar]
  7. Calderon J., Unanue E. R. Two biological activities regulating cell proliferation found in cultures of peritoneal exudate cells. Nature. 1975 Jan 31;253(5490):359–361. doi: 10.1038/253359a0. [DOI] [PubMed] [Google Scholar]
  8. Cavallo T., Sade R., Folkman J., Cotran R. S. Tumor angiogenesis. Rapid induction of endothelial mitoses demonstrated by autoradiography. J Cell Biol. 1972 Aug;54(2):408–420. doi: 10.1083/jcb.54.2.408. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Cavallo T., Sade R., Folkman J., Cotran R. S. Ultrastructural autoradiographic studies of the early vasoproliferative response in tumor angiogenesis. Am J Pathol. 1973 Mar;70(3):345–362. [PMC free article] [PubMed] [Google Scholar]
  10. Cotran R. S., Remensnyder J. P. The structural basis of increased vascular permeabiligy after graded thermal injury--light and electron microscopic studies. Ann N Y Acad Sci. 1968 Aug 14;150(3):495–509. doi: 10.1111/j.1749-6632.1968.tb14702.x. [DOI] [PubMed] [Google Scholar]
  11. Cotran R. S. Studies on inflammation. Ultrastructure of the prolonged vascular response induced by Clostridium oedematiens toxin. Lab Invest. 1967 Jul;17(1):39–60. [PubMed] [Google Scholar]
  12. Cotran R. S., Suter E. R., Majno G. The use of colloidal carbon as a tracer for vascular injury. A review. Vasc Dis. 1967 Apr;4(2):107–127. [PubMed] [Google Scholar]
  13. Dvorak A. M., Mihm M. C., Jr, Dvorak H. F. Morphology of delayed-type hypersensitivity reactions in man. II. Ultrastructural alterations affecting the microvasculature and the tissue mast cells. Lab Invest. 1976 Feb;34(2):179–191. [PubMed] [Google Scholar]
  14. Engerman R. L., Pfaffenbach D., Davis M. D. Cell turnover of capillaries. Lab Invest. 1967 Dec;17(6):738–743. [PubMed] [Google Scholar]
  15. FRIEDMAN M., BYERS S. O. EXCESS LIPID LEAKAGE: A PROPERTY OF VERY YOUNG VASCULAR ENDOTHELIUM. Br J Exp Pathol. 1962 Aug;43:363–372. [PMC free article] [PubMed] [Google Scholar]
  16. Fishman J. A., Ryan G. B., Karnovsky M. J. Endothelial regeneration in the rat carotid artery and the significance of endothelial denudation in the pathogenesis of myointimal thickening. Lab Invest. 1975 Mar;32(3):339–351. [PubMed] [Google Scholar]
  17. Folkman J., Cotran R. Relation of vascular proliferation to tumor growth. Int Rev Exp Pathol. 1976;16:207–248. [PubMed] [Google Scholar]
  18. Folkman J., Merler E., Abernathy C., Williams G. Isolation of a tumor factor responsible for angiogenesis. J Exp Med. 1971 Feb 1;133(2):275–288. doi: 10.1084/jem.133.2.275. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Fromer C. H., Klintworth G. K. An evaluation of the role of leukocytes in the pathogenesis of experimentally induced corneal vascularization. II. Studies on the effect of leukocytic elimination on corneal vascularization. Am J Pathol. 1975 Dec;81(3):531–544. [PMC free article] [PubMed] [Google Scholar]
  20. Fromer C. H., Klintworth G. K. An evaluation of the role of leukocytes in the pathogenesis of experimentally induced corneal vascularization. III. Studies related to the vasoproliferative capability of polymorphonuclear leukocytes and lymphocytes. Am J Pathol. 1976 Jan;82(1):157–170. [PMC free article] [PubMed] [Google Scholar]
  21. Gabbiani G., Badonnel M. C. Early changes of endothelial clefts after thermal injury. Microvasc Res. 1975 Jul;10(1):65–75. doi: 10.1016/0026-2862(75)90020-5. [DOI] [PubMed] [Google Scholar]
  22. Gimbrone M. A., Jr, Cotran R. S., Leapman S. B., Folkman J. Tumor growth and neovascularization: an experimental model using the rabbit cornea. J Natl Cancer Inst. 1974 Feb;52(2):413–427. doi: 10.1093/jnci/52.2.413. [DOI] [PubMed] [Google Scholar]
  23. Gimbrone M. A., Jr, Leapman S. B., Cotran R. S., Folkman J. Tumor dormancy in vivo by prevention of neovascularization. J Exp Med. 1972 Aug 1;136(2):261–276. doi: 10.1084/jem.136.2.261. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Ham K. N., Hurley J. V. Acute inflammation: an electron-microscope study of turpentine-induced pleurisy in the rat. J Pathol Bacteriol. 1965 Oct;90(2):365–377. doi: 10.1002/path.1700900202. [DOI] [PubMed] [Google Scholar]
  25. Ham K. N., Hurley J. V. An electron-microscope study of the vascular response to mild thermal injury in the rat. J Pathol Bacteriol. 1968 Jan;95(1):175–183. doi: 10.1002/path.1700950120. [DOI] [PubMed] [Google Scholar]
  26. Hurley J. V., Ham K. N., Ryan G. B. The mechanism of the delayed response to x-irradiation of the skin of hairless mice and of rats. Pathology. 1969 Jan;1(1):3–18. doi: 10.3109/00313026909061030. [DOI] [PubMed] [Google Scholar]
  27. IMRE G. STUDIES ON THE MECHANISM OF RETINAL NEOVASCULARIZATION. ROLE OF LACTIC ACID. Br J Ophthalmol. 1964 Feb;48:75–82. doi: 10.1136/bjo.48.2.75. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Jorgensen L., Rowsell H. C., Hovig T., Mustard J. F. Resolution and organization of platelet-rich mural thrombi in carotid arteries of swine. Am J Pathol. 1967 Nov;51(5):681–719. [PMC free article] [PubMed] [Google Scholar]
  29. Klagsbrun M., Knighton D., Folkman J. Tumor angiogenesis activity in cells grown in tissue culture. Cancer Res. 1976 Jan;36(1):110–114. [PubMed] [Google Scholar]
  30. Leibovich S. J., Ross R. A macrophage-dependent factor that stimulates the proliferation of fibroblasts in vitro. Am J Pathol. 1976 Sep;84(3):501–514. [PMC free article] [PubMed] [Google Scholar]
  31. Leibovich S. J., Ross R. The role of the macrophage in wound repair. A study with hydrocortisone and antimacrophage serum. Am J Pathol. 1975 Jan;78(1):71–100. [PMC free article] [PubMed] [Google Scholar]
  32. Martz E., Steinberg M. S. The role of cell-cell contact in "contact" inhibition of cell division: a review and new evidence. J Cell Physiol. 1972 Apr;79(2):189–210. doi: 10.1002/jcp.1040790205. [DOI] [PubMed] [Google Scholar]
  33. POOLE J. C., SANDERS A. G., FLOREY H. W. The regeneration of aortic endothelium. J Pathol Bacteriol. 1958 Jan;75(1):133–143. doi: 10.1002/path.1700750116. [DOI] [PubMed] [Google Scholar]
  34. Polverini P. J., Cotran R. S., Sholley M. M. Endothelial proliferation in the delayed hypersensitivity reaction: an autoradiographic study. J Immunol. 1977 Feb;118(2):529–532. [PubMed] [Google Scholar]
  35. Prathap K. Surface lining cells of healing thrombi in rat femoral veins: an electron-microscope study. J Pathol. 1972 May;107(1):1–8. doi: 10.1002/path.1711070102. [DOI] [PubMed] [Google Scholar]
  36. REYNOLDS E. S. The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J Cell Biol. 1963 Apr;17:208–212. doi: 10.1083/jcb.17.1.208. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. RICHARDSON K. C., JARETT L., FINKE E. H. Embedding in epoxy resins for ultrathin sectioning in electron microscopy. Stain Technol. 1960 Nov;35:313–323. doi: 10.3109/10520296009114754. [DOI] [PubMed] [Google Scholar]
  38. Remensnyder J. P., Majno G. Oxygen gradients in healing wounds. Am J Pathol. 1968 Feb;52(2):301–323. [PMC free article] [PubMed] [Google Scholar]
  39. Ross R., Glomset J. A. The pathogenesis of atherosclerosis (first of two parts). N Engl J Med. 1976 Aug 12;295(7):369–377. doi: 10.1056/NEJM197608122950707. [DOI] [PubMed] [Google Scholar]
  40. Ryan G. B., Majno G. Acute inflammation. A review. Am J Pathol. 1977 Jan;86(1):183–276. [PMC free article] [PubMed] [Google Scholar]
  41. SPECTOR W. G., WILLOUGHBY D. A. Experimental suppression of the acute inflammatory changes of thermal injury. J Pathol Bacteriol. 1959 Jul;78:121–132. doi: 10.1002/path.1700780113. [DOI] [PubMed] [Google Scholar]
  42. STEHBENS W. E. ENDOTHELIAL CELL MITOSIS AND PERMEABILITY. Q J Exp Physiol Cogn Med Sci. 1965 Jan;50:90–92. doi: 10.1113/expphysiol.1965.sp001773. [DOI] [PubMed] [Google Scholar]
  43. Schwartz S. M., Stemerman M. B., Benditt E. P. The aortic intima. II. Repair of the aortic lining after mechanical denudation. Am J Pathol. 1975 Oct;81(1):15–42. [PMC free article] [PubMed] [Google Scholar]
  44. Sholley M. M., Cotran R. S. Endothelial DNA synthesis in themicrovasculature of rat skin during the hair growth cycle. Am J Anat. 1976 Oct;147(2):243–254. doi: 10.1002/aja.1001470208. [DOI] [PubMed] [Google Scholar]
  45. Sholley M. M., Gimbrone M. A., Jr, Cotran R. S. Cellular migration and replication in endothelial regeneration: a study using irradiated endothelial cultures. Lab Invest. 1977 Jan;36(1):18–25. [PubMed] [Google Scholar]
  46. Spector W. G., Lykke A. W. The cellular evolution of inflammatory granulomata. J Pathol Bacteriol. 1966 Jul;92(1):163–167. doi: 10.1002/path.1700920117. [DOI] [PubMed] [Google Scholar]
  47. Still W. J., Ghani A. R., Dennison S. M. The organization of isolated mural thrombi in aortic grafts. An electron microscopic study. Am J Pathol. 1967 Dec;51(6):1013–1029. [PMC free article] [PubMed] [Google Scholar]
  48. Tannock I. F., Hayashi S. The proliferation of capillary endothelial cells. Cancer Res. 1972 Jan;32(1):77–82. [PubMed] [Google Scholar]
  49. Tannock I. F. Population kinetics of carcinoma cells, capillary endothelial cells, and fibroblasts in a transplanted mouse mammary tumor. Cancer Res. 1970 Oct;30(10):2470–2476. [PubMed] [Google Scholar]
  50. Todaro G. J., Lazar G. K., Green H. The initiation of cell division in a contact-inhibited mammalian cell line. J Cell Physiol. 1965 Dec;66(3):325–333. doi: 10.1002/jcp.1030660310. [DOI] [PubMed] [Google Scholar]
  51. Unanue E. R. Secretory function of mononuclear phagocytes: a review. Am J Pathol. 1976 May;83(2):396–418. [PMC free article] [PubMed] [Google Scholar]
  52. WILHELM D. L., MASON B. Vascular permeability changes in inflammation: the role of endogenous permeability factors in mild thermal injury. Br J Exp Pathol. 1960 Oct;41:487–506. [PMC free article] [PubMed] [Google Scholar]
  53. Warren B. A., Greenblatt M., Kommineni V. R. Tumour angiogenesis: ultrastructure of endothelial cells in mitosis. Br J Exp Pathol. 1972 Apr;53(2):216–224. [PMC free article] [PubMed] [Google Scholar]
  54. Warren B. A. The ultrastructure of the microcirculation at the advancing edge of Walker 256 carcinoma. Microvasc Res. 1970 Oct;2(4):443–453. doi: 10.1016/0026-2862(70)90037-3. [DOI] [PubMed] [Google Scholar]
  55. Wiener J., Lattes R. G., Spiro D. An electron microscopic study of leukocyte emigration and vascular permeability in tuberculin sensitivity. Am J Pathol. 1967 Mar;50(3):485–521. [PMC free article] [PubMed] [Google Scholar]
  56. Williams G. M., Krajewski C. A., Dagher F. J., ter Haar A. M., Roth J. A., Santos G. W. Host repopulation of endothelium. Transplant Proc. 1971 Mar;3(1):869–872. [PubMed] [Google Scholar]
  57. Willms-Kretschmer K., Flax M. H., Cotran R. S. The fine structure of the vascular response in hapten-specific delayed hypersensitivity and contact dermatitis. Lab Invest. 1967 Sep;17(3):334–349. [PubMed] [Google Scholar]
  58. Zauberman H., Michaelson I. C., Bergmann F., Maurice D. M. Stimulation of neovascularization of the cornea by biogenic amines. Exp Eye Res. 1969 Jan;8(1):77–83. doi: 10.1016/s0014-4835(69)80083-7. [DOI] [PubMed] [Google Scholar]
  59. Zawacki B. E., Jones R. J. Standard depth burns in the rat: the importance of the hair growth cycle. Br J Plast Surg. 1967 Oct;20(4):347–354. doi: 10.1016/s0007-1226(67)80065-1. [DOI] [PubMed] [Google Scholar]

Articles from The American Journal of Pathology are provided here courtesy of American Society for Investigative Pathology

RESOURCES