Abstract
The conversion of 5-hydroxyflavone by various microorganisms was studied. Among them, Streptomyces fulvissimus was the sole microbe which produced a new polar metabolite from 5-hydroxyflavone in addition to 5,4-dihydoxy- and 5,3,4-trihydroxyflavone. The structure of this polar metabolite was determined to be 5,4-dihydroxyflavone-4-sulfate on the basis of mass, infrared, and nuclear magnetic resonance spectroscopies. These results demonstrate that S. fulvissimus catalyzes sulfation at the 4 position of 4,5-dihydroxyflavone.
Full text
PDF


Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bjeldanes L. F., Chang G. W. Mutagenic activity of quercetin and related compounds. Science. 1977 Aug 5;197(4303):577–578. doi: 10.1126/science.327550. [DOI] [PubMed] [Google Scholar]
- Cassady J. M., Zennie T. M., Chae Y. H., Ferin M. A., Portuondo N. E., Baird W. M. Use of a mammalian cell culture benzo(a)pyrene metabolism assay for the detection of potential anticarcinogens from natural products: inhibition of metabolism by biochanin A, an isoflavone from Trifolium pratense L. Cancer Res. 1988 Nov 15;48(22):6257–6261. [PubMed] [Google Scholar]
- Cerniglia C. E., Freeman J. P., Mitchum R. K. Glucuronide and sulfate conjugation in the fungal metabolism of aromatic hydrocarbons. Appl Environ Microbiol. 1982 May;43(5):1070–1075. doi: 10.1128/aem.43.5.1070-1075.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Conney A. H. Induction of microsomal enzymes by foreign chemicals and carcinogenesis by polycyclic aromatic hydrocarbons: G. H. A. Clowes Memorial Lecture. Cancer Res. 1982 Dec;42(12):4875–4917. [PubMed] [Google Scholar]
- Elliger C. A., Henika P. R., MacGregor J. T. Mutagenicity of flavones, chromones and acetophenones in Salmonella typhimurium. New structure-activity relationships. Mutat Res. 1984 Feb;135(2):77–86. doi: 10.1016/0165-1218(84)90159-9. [DOI] [PubMed] [Google Scholar]
- Hackett A. M., Griffiths L. A., Broillet A., Wermeille M. The metabolism and excretion of (+)-[14C]cyanidanol-3 in man following oral administration. Xenobiotica. 1983 May;13(5):279–286. doi: 10.3109/00498258309052265. [DOI] [PubMed] [Google Scholar]
- Hackett A. M., Griffiths L. A. The metabolism and excretion of 3-palmitoyl-(+)-catechin in the rat. Xenobiotica. 1982 Jul;12(7):447–456. doi: 10.3109/00498258209052486. [DOI] [PubMed] [Google Scholar]
- Hackett A. M., Griffiths L. A., Wermeille M. The quantitative disposition of 3-O-methyl-(+)-[U-14C]catechin in man following oral administration. Xenobiotica. 1985 Nov;15(11):907–914. doi: 10.3109/00498258509045044. [DOI] [PubMed] [Google Scholar]
- Kaul T. N., Middleton E., Jr, Ogra P. L. Antiviral effect of flavonoids on human viruses. J Med Virol. 1985 Jan;15(1):71–79. doi: 10.1002/jmv.1890150110. [DOI] [PubMed] [Google Scholar]
- Martin P. M., Horwitz K. B., Ryan D. S., McGuire W. L. Phytoestrogen interaction with estrogen receptors in human breast cancer cells. Endocrinology. 1978 Nov;103(5):1860–1867. doi: 10.1210/endo-103-5-1860. [DOI] [PubMed] [Google Scholar]
- Pierpoint W. S. Flavonoids in the human diet. Prog Clin Biol Res. 1986;213:125–140. [PubMed] [Google Scholar]
- Singleton V. L. Naturally occurring food toxicants: phenolic substances of plant origin common in foods. Adv Food Res. 1981;27:149–242. doi: 10.1016/s0065-2628(08)60299-2. [DOI] [PubMed] [Google Scholar]
- Verma A. K., Johnson J. A., Gould M. N., Tanner M. A. Inhibition of 7,12-dimethylbenz(a)anthracene- and N-nitrosomethylurea-induced rat mammary cancer by dietary flavonol quercetin. Cancer Res. 1988 Oct 15;48(20):5754–5758. [PubMed] [Google Scholar]
- el-Sharkawy S., Abul-Hajj Y. J. Microbial cleavage of zearalenone. Xenobiotica. 1988 Apr;18(4):365–371. doi: 10.3109/00498258809041672. [DOI] [PubMed] [Google Scholar]
