Abstract
Ultrastructural alterations in the sarcolemma of ischemic myocardium were studied with the freeze-fracture technique. In normal myocardial sarcolemma, the P fracture face contained many intramembranous particles which were randomly distributed, while the E fracture face had few intramembranous particles; no structural abnormalities were seen within the lipid bilayer on either face. Myocardium ischemic for 45 minutes displayed no, or only slight, aggregation of intramembranous particles, but upon reperfusion for 5 to 20 minutes, the particles became significantly aggregated in the P face. Scattered nicks within the lipid bilayer were observed on both fracture faces. Intramembranous particles were similarly aggregated in myocardium ischemic for 2 hours; however, the number of nicks were greatly increased on the P and E fracture faces. These structural alterations, which were undetected in thin sections, are likely to be associated with altered function in the sarcolemma of ischemic myocardium.
Full text
PDF![583](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fb06/2032389/009c09b431a0/amjpathol00397-0086.png)
![584](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fb06/2032389/74f767dc0b4c/amjpathol00397-0087.png)
![585](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fb06/2032389/a472d3822aa6/amjpathol00397-0088.png)
![586](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fb06/2032389/a1a4cc2b1aef/amjpathol00397-0089.png)
![587](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fb06/2032389/74b281168f9b/amjpathol00397-0090.png)
![588](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fb06/2032389/8f2e7eb621f8/amjpathol00397-0091.png)
![589](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fb06/2032389/524e69facfb9/amjpathol00397-0092.png)
![590](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fb06/2032389/40a576b54387/amjpathol00397-0093.png)
![591](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fb06/2032389/db80b50f0a51/amjpathol00397-0094.png)
![592](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fb06/2032389/b9bec8435621/amjpathol00397-0095.png)
![593](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fb06/2032389/26347a46972f/amjpathol00397-0096.png)
![594](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fb06/2032389/c4f7325a3eec/amjpathol00397-0097.png)
Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Branton D., Bullivant S., Gilula N. B., Karnovsky M. J., Moor H., Mühlethaler K., Northcote D. H., Packer L., Satir B., Satir P. Freeze-etching nomenclature. Science. 1975 Oct 3;190(4209):54–56. doi: 10.1126/science.1166299. [DOI] [PubMed] [Google Scholar]
- Branton D. Fracture faces of frozen membranes. Proc Natl Acad Sci U S A. 1966 May;55(5):1048–1056. doi: 10.1073/pnas.55.5.1048. [DOI] [PMC free article] [PubMed] [Google Scholar]
- CONN H. L., Jr, WOOD J. C., MORALES G. S. Rate of change in myocardial glycogen and lactic acid following arrest of coronary circulation. Circ Res. 1959 Sep;7:721–727. doi: 10.1161/01.res.7.5.721. [DOI] [PubMed] [Google Scholar]
- Chevalier J., Bourguet J., Hugon J. S. Membrane associated particles: distribution in frog urinary bladder epithelium at rest and after oxytocin treatment. Cell Tissue Res. 1974;152(2):129–140. doi: 10.1007/BF00224690. [DOI] [PubMed] [Google Scholar]
- Coleman S. E., Duggan J., Hackett R. L. Plasma membrane changes in freeze-fractured rat kidney cortex following renal ischemia. Lab Invest. 1976 Jul;35(1):63–70. [PubMed] [Google Scholar]
- Ganote C. E., Seabra-Gomes R., Nayler W. G., Jennings R. B. Irreversible myocardial injury in anoxic perfused rat hearts. Am J Pathol. 1975 Sep;80(3):419–450. [PMC free article] [PubMed] [Google Scholar]
- Herdson P. B., Kaltenbach J. P., Jennings R. B. Fine structural and biochemical changes in dog myocardium during autolysis. Am J Pathol. 1969 Dec;57(3):539–557. [PMC free article] [PubMed] [Google Scholar]
- Kimelberg H. K. Protein-liposome interactions and their relevance to the structure and function of cell membranes. Mol Cell Biochem. 1976 Feb 25;10(3):171–190. doi: 10.1007/BF01731688. [DOI] [PubMed] [Google Scholar]
- McIntyre J. A., Gilula N. B., Karnovsky M. J. Cryoprotectant-induced redistribution of intramembranous particles in mouse lymphocytes. J Cell Biol. 1974 Jan;60(1):192–203. doi: 10.1083/jcb.60.1.192. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pinto da Silva P., Branton D. Membrane splitting in freeze-ethching. Covalently bound ferritin as a membrane marker. J Cell Biol. 1970 Jun;45(3):598–605. doi: 10.1083/jcb.45.3.598. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pinto da Silva P., Douglas S. D., Branton D. Localization of A antigen sites on human erythrocyte ghosts. Nature. 1971 Jul 16;232(5307):194–196. doi: 10.1038/232194a0. [DOI] [PubMed] [Google Scholar]
- Shen A. C., Jennings R. B. Myocardial calcium and magnesium in acute ischemic injury. Am J Pathol. 1972 Jun;67(3):417–440. [PMC free article] [PubMed] [Google Scholar]
- Singer S. J., Nicolson G. L. The fluid mosaic model of the structure of cell membranes. Science. 1972 Feb 18;175(4023):720–731. doi: 10.1126/science.175.4023.720. [DOI] [PubMed] [Google Scholar]
- Whalen D. A., Jr, Hamilton D. G., Ganote C. E., Jennings R. B. Effect of a transient period of ischemia on myocardial cells. I. Effects on cell volume regulation. Am J Pathol. 1974 Mar;74(3):381–397. [PMC free article] [PubMed] [Google Scholar]