Skip to main content
British Journal of Cancer logoLink to British Journal of Cancer
. 1994 Jul;70(1):54–59. doi: 10.1038/bjc.1994.249

Lysis of allogeneic and autologous melanoma cells by IL-7-induced lymphokine-activated killer cells.

M Böhm 1, P Möller 1, U Kalbfleisch 1, M Worm 1, B M Czarnetzki 1, D Schadendorf 1
PMCID: PMC2033302  PMID: 8018541

Abstract

In order to assess the potential of interleukin 7 (IL-7) as an immunotherapeutic agent in human melanoma, we have evaluated the in vitro activity of IL-7-induced lymphokine-activated killer (LAK) cells from patients with advanced melanoma against allogeneic and autologous melanoma cells. Peripheral blood lymphocytes (PBLs) from 14 patients with stage III melanoma were isolated and incubated in the presence of 1,000 U ml-1 IL-7 and 100 U ml-1 IL-2 for comparison. LAK-cell activity was determined by a 24 h cytotoxicity assay using MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide]. The activity of IL-7-induced LAK cells against two allogeneic melanoma cell lines was 32.7% (+/- 17.9) against SK-Mel-37 and 38.1% (+/- 12.5) against SK-Mel-23 at an effector-to-target (E/T) ratio of 20:1. The activity of IL-2-induced LAK cells was significantly higher against SK-Mel-37 (78 +/- 24.6%) and against SK-Mel-23 (73.5 +/- 19.7%). IL-7 and suboptimal doses of IL-2 (10 U ml-1) were found to have a co-stimulatory on lymphocyte proliferation as well as on LAK activity. Against autologous melanoma cells, the activity of IL-7- and IL-2-induced LAK cells did not differ significantly (55.8 +/- 25.6% versus 68.7 +/- 21.7% respectively). In two patients, IL-7-induced LAK-cell activity against autologous melanoma cells exceeded even that of IL-2 significantly (67% vs 35% and 95% vs 82%). Levels of tumour necrosis factor alpha (TNF-alpha) in the supernatants of LAK-cell cultures generated by IL-7 were lower than those of IL-2-generated LAK-cell cultures. These results suggest that IL-7 is a potential alternative to immunotherapy with IL-2 in terms of efficacy and possible side-effects and encourages pilot studies with IL-7 in melanoma patients.

Full text

PDF
54

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alderson M. R., Sassenfeld H. M., Widmer M. B. Interleukin 7 enhances cytolytic T lymphocyte generation and induces lymphokine-activated killer cells from human peripheral blood. J Exp Med. 1990 Aug 1;172(2):577–587. doi: 10.1084/jem.172.2.577. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Alderson M. R., Tough T. W., Ziegler S. F., Grabstein K. H. Interleukin 7 induces cytokine secretion and tumoricidal activity by human peripheral blood monocytes. J Exp Med. 1991 Apr 1;173(4):923–930. doi: 10.1084/jem.173.4.923. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Altomonte M., Gloghini A., Bertola G., Gasparollo A., Carbone A., Ferrone S., Maio M. Differential expression of cell adhesion molecules CD54/CD11a and CD58/CD2 by human melanoma cells and functional role in their interaction with cytotoxic cells. Cancer Res. 1993 Jul 15;53(14):3343–3348. [PubMed] [Google Scholar]
  4. Chazen G. D., Pereira G. M., LeGros G., Gillis S., Shevach E. M. Interleukin 7 is a T-cell growth factor. Proc Natl Acad Sci U S A. 1989 Aug;86(15):5923–5927. doi: 10.1073/pnas.86.15.5923. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Coulie P. G., Somville M., Lehmann F., Hainaut P., Brasseur F., Devos R., Boon T. Precursor frequency analysis of human cytolytic T lymphocytes directed against autologous melanoma cells. Int J Cancer. 1992 Jan 21;50(2):289–297. doi: 10.1002/ijc.2910500220. [DOI] [PubMed] [Google Scholar]
  6. Fletcher M., Goldstein A. L. Recent advances in the understanding of the biochemistry and clinical pharmacology of interleukin-2. Lymphokine Res. 1987 Winter;6(1):45–57. [PubMed] [Google Scholar]
  7. Foa R., Fierro M. T., Raspadori D., Bonferroni M., Cardona S., Guarini A., Tos A. G., di Celle P. F., Cesano A., Matera L. Lymphokine-activated killer (LAK) cell activity in B and T chronic lymphoid leukemia: defective LAK generation and reduced susceptibility of the leukemic cells to allogeneic and autologous LAK effectors. Blood. 1990 Oct 1;76(7):1349–1354. [PubMed] [Google Scholar]
  8. Grimm E. A., Mazumder A., Zhang H. Z., Rosenberg S. A. Lymphokine-activated killer cell phenomenon. Lysis of natural killer-resistant fresh solid tumor cells by interleukin 2-activated autologous human peripheral blood lymphocytes. J Exp Med. 1982 Jun 1;155(6):1823–1841. doi: 10.1084/jem.155.6.1823. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Heo D. S., Park J. G., Hata K., Day R., Herberman R. B., Whiteside T. L. Evaluation of tetrazolium-based semiautomatic colorimetric assay for measurement of human antitumor cytotoxicity. Cancer Res. 1990 Jun 15;50(12):3681–3690. [PubMed] [Google Scholar]
  10. Jicha D. L., Schwarz S., Mulé J. J., Rosenberg S. A. Interleukin-7 mediates the generation and expansion of murine allosensitized and antitumor CTL. Cell Immunol. 1992 Apr 15;141(1):71–83. doi: 10.1016/0008-8749(92)90128-c. [DOI] [PubMed] [Google Scholar]
  11. Kirnbauer R., Charvat B., Schauer E., Köck A., Urbanski A., Förster E., Neuner P., Assmann I., Luger T. A., Schwarz T. Modulation of intercellular adhesion molecule-1 expression on human melanocytes and melanoma cells: evidence for a regulatory role of IL-6, IL-7, TNF beta, and UVB light. J Invest Dermatol. 1992 Mar;98(3):320–326. doi: 10.1111/1523-1747.ep12499793. [DOI] [PubMed] [Google Scholar]
  12. Kozeny G. A., Nicolas J. D., Creekmore S., Sticklin L., Hano J. E., Fisher R. I. Effects of interleukin-2 immunotherapy on renal function. J Clin Oncol. 1988 Jul;6(7):1170–1176. doi: 10.1200/JCO.1988.6.7.1170. [DOI] [PubMed] [Google Scholar]
  13. Londei M., Verhoef A., Hawrylowicz C., Groves J., De Berardinis P., Feldmann M. Interleukin 7 is a growth factor for mature human T cells. Eur J Immunol. 1990 Feb;20(2):425–428. doi: 10.1002/eji.1830200228. [DOI] [PubMed] [Google Scholar]
  14. Moretta L., Ciccone E., Moretta A., Höglund P., Ohlén C., Kärre K. Allorecognition by NK cells: nonself or no self? Immunol Today. 1992 Aug;13(8):300–306. doi: 10.1016/0167-5699(92)90042-6. [DOI] [PubMed] [Google Scholar]
  15. Morikawa K., Nakano A., Oseko F., Morikawa S. Natural killer (NK) cell activity in patients with various malignancy against a variety of target cell lines: re-evaluation of clinical significance of natural killer cell activity. Jpn J Med. 1989 Jul-Aug;28(4):462–470. doi: 10.2169/internalmedicine1962.28.462. [DOI] [PubMed] [Google Scholar]
  16. Namen A. E., Schmierer A. E., March C. J., Overell R. W., Park L. S., Urdal D. L., Mochizuki D. Y. B cell precursor growth-promoting activity. Purification and characterization of a growth factor active on lymphocyte precursors. J Exp Med. 1988 Mar 1;167(3):988–1002. doi: 10.1084/jem.167.3.988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Naume B., Espevik T. Effects of IL-7 and IL-2 on highly enriched CD56+ natural killer cells. A comparative study. J Immunol. 1991 Oct 1;147(7):2208–2214. [PubMed] [Google Scholar]
  18. Piali L., Albelda S. M., Baldwin H. S., Hammel P., Gisler R. H., Imhof B. A. Murine platelet endothelial cell adhesion molecule (PECAM-1)/CD31 modulates beta 2 integrins on lymphokine-activated killer cells. Eur J Immunol. 1993 Oct;23(10):2464–2471. doi: 10.1002/eji.1830231013. [DOI] [PubMed] [Google Scholar]
  19. Poggi A., Pardi R., Pella N., Morelli L., Sivori S., Vitale M., Revello V., Moretta A., Moretta L. CD45-mediated regulation of LFA1 function in human natural killer cells. Anti-CD45 monoclonal antibodies inhibit the calcium mobilization induced via LFA1 molecules. Eur J Immunol. 1993 Oct;23(10):2454–2463. doi: 10.1002/eji.1830231012. [DOI] [PubMed] [Google Scholar]
  20. Rosenberg S. A., Lotze M. T., Muul L. M., Leitman S., Chang A. E., Ettinghausen S. E., Matory Y. L., Skibber J. M., Shiloni E., Vetto J. T. Observations on the systemic administration of autologous lymphokine-activated killer cells and recombinant interleukin-2 to patients with metastatic cancer. N Engl J Med. 1985 Dec 5;313(23):1485–1492. doi: 10.1056/NEJM198512053132327. [DOI] [PubMed] [Google Scholar]
  21. Rosenberg S. A., Lotze M. T., Yang J. C., Aebersold P. M., Linehan W. M., Seipp C. A., White D. E. Experience with the use of high-dose interleukin-2 in the treatment of 652 cancer patients. Ann Surg. 1989 Oct;210(4):474–485. doi: 10.1097/00000658-198910000-00008. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Rosenstein M., Ettinghausen S. E., Rosenberg S. A. Extravasation of intravascular fluid mediated by the systemic administration of recombinant interleukin 2. J Immunol. 1986 Sep 1;137(5):1735–1742. [PubMed] [Google Scholar]
  23. Schadendorf D., Worm M., Algermissen B., Kohlmus C. M., Czarnetzki B. M. Chemosensitivity testing of human malignant melanoma. A retrospective analysis of clinical response and in vitro drug sensitivity. Cancer. 1994 Jan 1;73(1):103–108. doi: 10.1002/1097-0142(19940101)73:1<103::aid-cncr2820730119>3.0.co;2-k. [DOI] [PubMed] [Google Scholar]
  24. Siegel J. P., Puri R. K. Interleukin-2 toxicity. J Clin Oncol. 1991 Apr;9(4):694–704. doi: 10.1200/JCO.1991.9.4.694. [DOI] [PubMed] [Google Scholar]
  25. Smyth M. J., Norihisa Y., Gerard J. R., Young H. A., Ortaldo J. R. IL-7 regulation of cytotoxic lymphocytes: pore-forming protein gene expression, interferon-gamma production, and cytotoxicity of human peripheral blood lymphocytes subsets. Cell Immunol. 1991 Dec;138(2):390–403. doi: 10.1016/0008-8749(91)90163-6. [DOI] [PubMed] [Google Scholar]
  26. Stötter H., Custer M. C., Bolton E. S., Guedez L., Lotze M. T. IL-7 induces human lymphokine-activated killer cell activity and is regulated by IL-4. J Immunol. 1991 Jan 1;146(1):150–155. [PubMed] [Google Scholar]
  27. Stötter H., Lotze M. T. Human lymphokine-activated killer cell activity. Role of IL-2, IL-4, and IL-7. Arch Surg. 1991 Dec;126(12):1525–1530. doi: 10.1001/archsurg.1991.01410360099017. [DOI] [PubMed] [Google Scholar]
  28. Villa M. L., Ferrario E., Bergamasco E., Bozzetti F., Cozzaglio L., Clerici E. Reduced natural killer cell activity and IL-2 production in malnourished cancer patients. Br J Cancer. 1991 Jun;63(6):1010–1014. doi: 10.1038/bjc.1991.219. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Vyth-Dreese F. A., Dellemijn T. A., Frijhoff A., van Kooyk Y., Figdor C. G. Role of LFA-1/ICAM-1 in interleukin-2-stimulated lymphocyte proliferation. Eur J Immunol. 1993 Dec;23(12):3292–3299. doi: 10.1002/eji.1830231235. [DOI] [PubMed] [Google Scholar]
  30. Worm M., Schadendorf D., Czarnetzki B. M. Responsiveness to interferon treatment of human melanoma cells correlates to immunophenotype. Melanoma Res. 1993 Feb;3(1):29–33. doi: 10.1097/00008390-199304000-00005. [DOI] [PubMed] [Google Scholar]

Articles from British Journal of Cancer are provided here courtesy of Cancer Research UK

RESOURCES