Skip to main content
British Journal of Cancer logoLink to British Journal of Cancer
. 1994 Oct;70(4):573–578. doi: 10.1038/bjc.1994.353

Establishment of a murine leukaemia cell line resistant to the growth-inhibitory effect of bryostatin 1.

J Prendiville 1, A T McGown 1, A Gescher 1, A J Dickson 1, C Courage 1, G R Pettit 1, D Crowther 1, B W Fox 1
PMCID: PMC2033429  PMID: 7917900

Abstract

Bryostatin 1 is a novel macrocyclic lactone activator of protein kinase C (PKC) which has clinical potential as an anti-cancer agent. The mechanism of action of this agent is unknown, but protein kinase C has been implicated. In order to investigate this possibility, we have developed P388 sublines resistant to bryostatin 1, by continuous challenge of the parent cell line with increasing incremental concentrations of the drug over 4 months. Cell lines were established at monthly intervals yielding four sublines: P388/BR/A, which were removed at 1 month; P388/BR/B, obtained after 2 months; P388/BR/C, obtained after 3 months; and P388/BR/D, which were established after 4 months. All four P388/BR sublines show an equal degree of resistance to the growth inhibitory effects of bryostatin 1, with a relative resistance ratio (RR) IC50 of approximately 4,000. The ability of the cytosol of cells to phosphorylate PKC-specific substrate is decreased by 41% for BR/A, 57% for BR/B 80% for BR/C and 94% for BR/D compared with the parental cell line, even when grown in the absence of bryostatin 1 for up to 4 weeks. Similar decreases are seen for cytosolic phorbol ester binding and whole-cell PKC isoenzyme expression. All four P388/BR sublines show high and equal levels of cross-resistance to the PKC activatory phorbol ester, phorbol 12-myristate 13-acetate (PMA). There is no loss of resistance to either bryostatin 1 or PMA up to 3 months after termination of exposure of the sublines to bryostatin 1. There was no significant degree of cross-resistance to daunorubicin in the bryosatin 1-resistant cell lines, P388/BR/A, B, C or D, when compared with the parent cell line, P388.

Full text

PDF
573

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Azzi A., Boscoboinik D., Hensey C. The protein kinase C family. Eur J Biochem. 1992 Sep 15;208(3):547–557. doi: 10.1111/j.1432-1033.1992.tb17219.x. [DOI] [PubMed] [Google Scholar]
  2. Berkow R. L., Kraft A. S. Bryostatin, a non-phorbol macrocyclic lactone, activates intact human polymorphonuclear leukocytes and binds to the phorbol ester receptor. Biochem Biophys Res Commun. 1985 Sep 30;131(3):1109–1116. doi: 10.1016/0006-291x(85)90205-0. [DOI] [PubMed] [Google Scholar]
  3. Castagna M., Takai Y., Kaibuchi K., Sano K., Kikkawa U., Nishizuka Y. Direct activation of calcium-activated, phospholipid-dependent protein kinase by tumor-promoting phorbol esters. J Biol Chem. 1982 Jul 10;257(13):7847–7851. [PubMed] [Google Scholar]
  4. Dale I. L., Gescher A. Effects of activators of protein kinase C, including bryostatins 1 and 2, on the growth of A549 human lung carcinoma cells. Int J Cancer. 1989 Jan 15;43(1):158–163. doi: 10.1002/ijc.2910430129. [DOI] [PubMed] [Google Scholar]
  5. Fields A. P., Pettit G. R., May W. S. Phosphorylation of lamin B at the nuclear membrane by activated protein kinase C. J Biol Chem. 1988 Jun 15;263(17):8253–8260. [PubMed] [Google Scholar]
  6. Gescher A. Towards selective pharmacological modulation of protein kinase C--opportunities for the development of novel antineoplastic agents. Br J Cancer. 1992 Jul;66(1):10–19. doi: 10.1038/bjc.1992.209. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Hait W. N., DeRosa W. T. The role of the phorbol ester receptor/protein kinase C in the sensitivity of leukemic cells to anthracyclines. Cancer Commun. 1991 Mar;3(3):77–81. doi: 10.3727/095535491820873498. [DOI] [PubMed] [Google Scholar]
  8. Hannun Y. A., Bell R. M. Mixed micellar assay for phorbol ester binding. Methods Enzymol. 1987;141:287–293. doi: 10.1016/0076-6879(87)41076-8. [DOI] [PubMed] [Google Scholar]
  9. Hennings H., Blumberg P. M., Pettit G. R., Herald C. L., Shores R., Yuspa S. H. Bryostatin 1, an activator of protein kinase C, inhibits tumor promotion by phorbol esters in SENCAR mouse skin. Carcinogenesis. 1987 Sep;8(9):1343–1346. doi: 10.1093/carcin/8.9.1343. [DOI] [PubMed] [Google Scholar]
  10. Hornung R. L., Pearson J. W., Beckwith M., Longo D. L. Preclinical evaluation of bryostatin as an anticancer agent against several murine tumor cell lines: in vitro versus in vivo activity. Cancer Res. 1992 Jan 1;52(1):101–107. [PubMed] [Google Scholar]
  11. Jetten A. M., George M. A., Pettit G. R., Rearick J. I. Effects of bryostatins and retinoic acid on phorbol ester- and diacylglycerol-induced squamous differentiation in human tracheobronchial epithelial cells. Cancer Res. 1989 Jul 15;49(14):3990–3995. [PubMed] [Google Scholar]
  12. Kiss Z., Rapp U. R., Pettit G. R., Anderson W. B. Phorbol ester and bryostatin differentially regulate the hydrolysis of phosphatidylethanolamine in Ha-ras- and raf-oncogene-transformed NIH 3T3 cells. Biochem J. 1991 Jun 1;276(Pt 2):505–509. doi: 10.1042/bj2760505. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Kraft A. S., Smith J. B., Berkow R. L. Bryostatin, an activator of the calcium phospholipid-dependent protein kinase, blocks phorbol ester-induced differentiation of human promyelocytic leukemia cells HL-60. Proc Natl Acad Sci U S A. 1986 Mar;83(5):1334–1338. doi: 10.1073/pnas.83.5.1334. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. König B., Di Nitto P. A., Blumberg P. M. Phospholipid and Ca++ dependency of phorbol ester receptors. J Cell Biochem. 1985;27(3):255–265. doi: 10.1002/jcb.240270307. [DOI] [PubMed] [Google Scholar]
  15. McGown A. T., Ward T. H., Fox B. W. Comparative studies of the uptake of daunorubicin in sensitive and resistant P388 cell lines by flow cytometry and biochemical extraction procedures. Cancer Chemother Pharmacol. 1983;11(2):113–116. doi: 10.1007/BF00254258. [DOI] [PubMed] [Google Scholar]
  16. Nakadate T., Blumberg P. M. Modulation by palmitoylcarnitine of protein kinase C activation. Cancer Res. 1987 Dec 15;47(24 Pt 1):6537–6542. [PubMed] [Google Scholar]
  17. Nelsestuen G. L., Bazzi M. D. Activation and regulation of protein kinase C enzymes. J Bioenerg Biomembr. 1991 Feb;23(1):43–61. doi: 10.1007/BF00768838. [DOI] [PubMed] [Google Scholar]
  18. Nishizuka Y. The molecular heterogeneity of protein kinase C and its implications for cellular regulation. Nature. 1988 Aug 25;334(6184):661–665. doi: 10.1038/334661a0. [DOI] [PubMed] [Google Scholar]
  19. Palayoor S. T., Stein J. M., Hait W. N. Inhibition of protein kinase C by antineoplastic agents: implications for drug resistance. Biochem Biophys Res Commun. 1987 Oct 29;148(2):718–725. doi: 10.1016/0006-291x(87)90935-1. [DOI] [PubMed] [Google Scholar]
  20. Parker P. J., Kour G., Marais R. M., Mitchell F., Pears C., Schaap D., Stabel S., Webster C. Protein kinase C--a family affair. Mol Cell Endocrinol. 1989 Aug;65(1-2):1–11. doi: 10.1016/0303-7207(89)90159-7. [DOI] [PubMed] [Google Scholar]
  21. Sako T., Yuspa S. H., Herald C. L., Pettit G. R., Blumberg P. M. Partial parallelism and partial blockade by bryostatin 1 of effects of phorbol ester tumor promoters on primary mouse epidermal cells. Cancer Res. 1987 Oct 15;47(20):5445–5450. [PubMed] [Google Scholar]
  22. Smith J. B., Smith L., Pettit G. R. Bryostatins: potent, new mitogens that mimic phorbol ester tumor promoters. Biochem Biophys Res Commun. 1985 Nov 15;132(3):939–945. doi: 10.1016/0006-291x(85)91898-4. [DOI] [PubMed] [Google Scholar]
  23. Yasuda I., Kishimoto A., Tanaka S., Tominaga M., Sakurai A., Nishizuka Y. A synthetic peptide substrate for selective assay of protein kinase C. Biochem Biophys Res Commun. 1990 Feb 14;166(3):1220–1227. doi: 10.1016/0006-291x(90)90996-z. [DOI] [PubMed] [Google Scholar]

Articles from British Journal of Cancer are provided here courtesy of Cancer Research UK

RESOURCES