Skip to main content
British Journal of Cancer logoLink to British Journal of Cancer
. 1994 Aug;70(2):228–232. doi: 10.1038/bjc.1994.284

Effects of inoculation site and Matrigel on growth and metastasis of human breast cancer cells.

L Bao 1, Y Matsumura 1, D Baban 1, Y Sun 1, D Tarin 1
PMCID: PMC2033496  PMID: 8054270

Abstract

The co-injection of extracellular matrix components, such as Matrigel, with human tumour cells into nude mice has been reported to facilitate tumour formation and growth, but it is unknown whether such components exert similar effects on tumour progression and metastasis. Metastatic behaviour is known to be enhanced when tumour cells are implanted orthotopically, and it is inferred that full and efficient expression of this phenotype may involve some interactions with local connective tissue matrix. It was therefore decided to investigate whether manipulation of the mesenchymal environment by co-injection of extracellular matrix components, in the form of Matrigel, with human breast cancer cells into orthotopic or ectopic sites could augment their metastatic performance, as well as their growth at the site of inoculation. Standard aliquots of 10(6) cells of the polyclonal human breast carcinoma cell line MDA-MB-435, and of four clonal cell lines, two metastatic and two non-metastatic derived from it, were injected with and without Matrigel, orthotopically or subcutaneously into nude mice. The latent period of tumour formation at the inoculation site as well as final tumour size and metastatic performance at autopsy, 140 days after inoculation, were then assessed. The prevalence of metastasis of the parent, polyclonal, cell line and of its metastatic clones was increased if the cell inoculum was mixed with Matrigel. Non-metastatic clones were not induced to become metastatic by this treatment, but local tumour growth at the site of inoculation was enhanced in all experimental groups receiving Matrigel. Orthotopic inoculation acted synergistically with Matrigel to maximise both tumour growth and metastatic behaviour. The composition of the local extracellular matrix at the site of tumour growth influenced expression of the metastatic phenotype by cells which are constitutionally capable of this behaviour, but did not induce it in ones which are not. Previous reports that local tumour growth is facilitated by enrichment of the mesenchymal matrix are confirmed. The mechanisms by which such effects are exerted are worthy of study, to ascertain whether they might be subject to clinical manipulation designed to retard tumour growth and dissemination.

Full text

PDF
228

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ahlering T. E., Dubeau L., Jones P. A. A new in vivo model to study invasion and metastasis of human bladder carcinoma. Cancer Res. 1987 Dec 15;47(24 Pt 1):6660–6665. [PubMed] [Google Scholar]
  2. Aumailley M., Timpl R. Attachment of cells to basement membrane collagen type IV. J Cell Biol. 1986 Oct;103(4):1569–1575. doi: 10.1083/jcb.103.4.1569. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Barsky S. H., Rao C. N., Williams J. E., Liotta L. A. Laminin molecular domains which alter metastasis in a murine model. J Clin Invest. 1984 Sep;74(3):843–848. doi: 10.1172/JCI111501. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bresalier R. S., Raper S. E., Hujanen E. S., Kim Y. S. A new animal model for human colon cancer metastasis. Int J Cancer. 1987 May 15;39(5):625–630. doi: 10.1002/ijc.2910390514. [DOI] [PubMed] [Google Scholar]
  5. Cailleau R., Olivé M., Cruciger Q. V. Long-term human breast carcinoma cell lines of metastatic origin: preliminary characterization. In Vitro. 1978 Nov;14(11):911–915. doi: 10.1007/BF02616120. [DOI] [PubMed] [Google Scholar]
  6. Chakravarti S., Tam M. F., Chung A. E. The basement membrane glycoprotein entactin promotes cell attachment and binds calcium ions. J Biol Chem. 1990 Jun 25;265(18):10597–10603. [PubMed] [Google Scholar]
  7. Clément B., Segui-Real B., Hassell J. R., Martin G. R., Yamada Y. Identification of a cell surface-binding protein for the core protein of the basement membrane proteoglycan. J Biol Chem. 1989 Jul 25;264(21):12467–12471. [PubMed] [Google Scholar]
  8. Fabra A., Nakajima M., Bucana C. D., Fidler I. J. Modulation of the invasive phenotype of human colon carcinoma cells by organ specific fibroblasts of nude mice. Differentiation. 1992 Dec;52(1):101–110. doi: 10.1111/j.1432-0436.1992.tb00504.x. [DOI] [PubMed] [Google Scholar]
  9. Fidler I. J. Critical factors in the biology of human cancer metastasis: twenty-eighth G.H.A. Clowes memorial award lecture. Cancer Res. 1990 Oct 1;50(19):6130–6138. [PubMed] [Google Scholar]
  10. Fidler I. J. Rationale and methods for the use of nude mice to study the biology and therapy of human cancer metastasis. Cancer Metastasis Rev. 1986;5(1):29–49. doi: 10.1007/BF00049529. [DOI] [PubMed] [Google Scholar]
  11. Fidler I. J. Tumor heterogeneity and the biology of cancer invasion and metastasis. Cancer Res. 1978 Sep;38(9):2651–2660. [PubMed] [Google Scholar]
  12. Fogh J., Fogh J. M., Orfeo T. One hundred and twenty-seven cultured human tumor cell lines producing tumors in nude mice. J Natl Cancer Inst. 1977 Jul;59(1):221–226. doi: 10.1093/jnci/59.1.221. [DOI] [PubMed] [Google Scholar]
  13. Fridman R., Giaccone G., Kanemoto T., Martin G. R., Gazdar A. F., Mulshine J. L. Reconstituted basement membrane (matrigel) and laminin can enhance the tumorigenicity and the drug resistance of small cell lung cancer cell lines. Proc Natl Acad Sci U S A. 1990 Sep;87(17):6698–6702. doi: 10.1073/pnas.87.17.6698. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Fridman R., Kibbey M. C., Royce L. S., Zain M., Sweeney M., Jicha D. L., Yannelli J. R., Martin G. R., Kleinman H. K. Enhanced tumor growth of both primary and established human and murine tumor cells in athymic mice after coinjection with Matrigel. J Natl Cancer Inst. 1991 Jun 5;83(11):769–774. doi: 10.1093/jnci/83.11.769. [DOI] [PubMed] [Google Scholar]
  15. Fridman R., Sweeney T. M., Zain M., Martin G. R., Kleinman H. K. Malignant transformation of NIH-3T3 cells after subcutaneous co-injection with a reconstituted basement membrane (matrigel). Int J Cancer. 1992 Jul 9;51(5):740–744. doi: 10.1002/ijc.2910510513. [DOI] [PubMed] [Google Scholar]
  16. Giavazzi R., Campbell D. E., Jessup J. M., Cleary K., Fidler I. J. Metastatic behavior of tumor cells isolated from primary and metastatic human colorectal carcinomas implanted into different sites in nude mice. Cancer Res. 1986 Apr;46(4 Pt 2):1928–1933. [PubMed] [Google Scholar]
  17. Hayle A. J., Darling D. L., Taylor A. R., Tarin D. Transfection of metastatic capability with total genomic DNA from human and mouse metastatic tumour cell lines. Differentiation. 1993 Oct;54(3):177–189. doi: 10.1111/j.1432-0436.1993.tb01600.x. [DOI] [PubMed] [Google Scholar]
  18. Kleinman H. K., McGarvey M. L., Hassell J. R., Star V. L., Cannon F. B., Laurie G. W., Martin G. R. Basement membrane complexes with biological activity. Biochemistry. 1986 Jan 28;25(2):312–318. doi: 10.1021/bi00350a005. [DOI] [PubMed] [Google Scholar]
  19. Kozlowski J. M., Fidler I. J., Campbell D., Xu Z. L., Kaighn M. E., Hart I. R. Metastatic behavior of human tumor cell lines grown in the nude mouse. Cancer Res. 1984 Aug;44(8):3522–3529. [PubMed] [Google Scholar]
  20. Miller F. R., Medina D., Heppner G. H. Preferential growth of mammary tumors in intact mammary fatpads. Cancer Res. 1981 Oct;41(10):3863–3867. [PubMed] [Google Scholar]
  21. Morikawa K., Walker S. M., Jessup J. M., Fidler I. J. In vivo selection of highly metastatic cells from surgical specimens of different primary human colon carcinomas implanted into nude mice. Cancer Res. 1988 Apr 1;48(7):1943–1948. [PubMed] [Google Scholar]
  22. Neulat-Duga I., Sheppel A., Marty C., Lacroux F., Pourrat J., Caverivière P., Delsol G. Metastases of human tumor xenografts in nude mice. Invasion Metastasis. 1984;4(4):209–224. [PubMed] [Google Scholar]
  23. Pretlow T. G., Delmoro C. M., Dilley G. G., Spadafora C. G., Pretlow T. P. Transplantation of human prostatic carcinoma into nude mice in Matrigel. Cancer Res. 1991 Jul 15;51(14):3814–3817. [PubMed] [Google Scholar]
  24. Price J. E., Polyzos A., Zhang R. D., Daniels L. M. Tumorigenicity and metastasis of human breast carcinoma cell lines in nude mice. Cancer Res. 1990 Feb 1;50(3):717–721. [PubMed] [Google Scholar]
  25. Rygaard J., Povlsen C. O. Heterotransplantation of a human malignant tumour to "Nude" mice. Acta Pathol Microbiol Scand. 1969;77(4):758–760. doi: 10.1111/j.1699-0463.1969.tb04520.x. [DOI] [PubMed] [Google Scholar]
  26. Sharkey F. E., Fogh J. Considerations in the use of nude mice for cancer research. Cancer Metastasis Rev. 1984;3(4):341–360. doi: 10.1007/BF00051459. [DOI] [PubMed] [Google Scholar]
  27. Sharkey F. E., Fogh J. Metastasis of human tumors in athymic nude mice. Int J Cancer. 1979 Dec 15;24(6):733–738. doi: 10.1002/ijc.2910240605. [DOI] [PubMed] [Google Scholar]
  28. Steeg P. S., Bevilacqua G., Kopper L., Thorgeirsson U. P., Talmadge J. E., Liotta L. A., Sobel M. E. Evidence for a novel gene associated with low tumor metastatic potential. J Natl Cancer Inst. 1988 Apr 6;80(3):200–204. doi: 10.1093/jnci/80.3.200. [DOI] [PubMed] [Google Scholar]
  29. Tarin D., Price J. E. Metastatic colonization potential of primary tumour cells in mice. Br J Cancer. 1979 Jun;39(6):740–754. doi: 10.1038/bjc.1979.128. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Terranova V. P., Williams J. E., Liotta L. A., Martin G. R. Modulation of the metastatic activity of melanoma cells by laminin and fibronectin. Science. 1984 Nov 23;226(4677):982–985. doi: 10.1126/science.6505678. [DOI] [PubMed] [Google Scholar]

Articles from British Journal of Cancer are provided here courtesy of Cancer Research UK

RESOURCES