Skip to main content
British Journal of Cancer logoLink to British Journal of Cancer
. 1994 Dec;70(6):1131–1135. doi: 10.1038/bjc.1994.460

Oxidation therapy: the use of a reactive oxygen species-generating enzyme system for tumour treatment.

O Ben-Yoseph 1, B D Ross 1
PMCID: PMC2033665  PMID: 7981065

Abstract

Oxygen radicals induce cytotoxicity via a variety of mechanisms, including DNA damage, lipid peroxidation and protein oxidation. Here, we explore the use of a polyethylene glycol (PEG)-stabilised enzyme capable of producing reactive oxygen species (ROS), glucose oxidase (GO), for the purpose of harnessing the cytotoxic potential of ROS for treating solid tumours. PEG-GO (200 U), administered by two intratumoral injections 3 h apart, produced a significant growth delay in subcutaneous rat 9L gliomas as compared with control animals receiving heat-denatured PEG-GO. Rats were protected from systemic toxicity by subsequent i.v. administration of PEG-superoxide dismutase (PEG-SOD) and PEG-catalase. In vivo tumour metabolic changes, monitored using 31P magnetic resonance spectroscopy (31P-MRS) 6 h following initial administration of PEG-GO, revealed a 96 +/- 2% reduction in the ATP/Pi ratio and a 0.72 +/- 0.10 unit decline in intracellular pH. A 3-fold sensitisation of 9L glioma cells in vitro to hydrogen peroxide could be achieved by a 24 h preincubation with buthionine sulphoximine (BSO). This study suggests that oxidation therapy, the use of an intratumoral ROS-generating enzyme system for the treatment of solid tumours, is a promising area which warrants further exploration.

Full text

PDF
1131

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Berger N. A. Cancer chemotherapy: new strategies for success. J Clin Invest. 1986 Nov;78(5):1131–1135. doi: 10.1172/JCI112692. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bradley M. O., Erickson L. C. Comparison of the effects of hydrogen peroxide and x-ray irradiation on toxicity, mutation, and DNA damage/repair in mammalian cells (V-79). Biochim Biophys Acta. 1981 Jun 26;654(1):135–141. doi: 10.1016/0005-2787(81)90146-5. [DOI] [PubMed] [Google Scholar]
  3. Brodie A. E., Reed D. J. Reversible oxidation of glyceraldehyde 3-phosphate dehydrogenase thiols in human lung carcinoma cells by hydrogen peroxide. Biochem Biophys Res Commun. 1987 Oct 14;148(1):120–125. doi: 10.1016/0006-291x(87)91084-9. [DOI] [PubMed] [Google Scholar]
  4. Bruchelt G., Schraufstätter I. U., Niethammer D., Cochrane C. G. Ascorbic acid enhances the effects of 6-hydroxydopamine and H2O2 on iron-dependent DNA strand breaks and related processes in the neuroblastoma cell line SK-N-SH. Cancer Res. 1991 Nov 15;51(22):6066–6072. [PubMed] [Google Scholar]
  5. Griffith O. W. Mechanism of action, metabolism, and toxicity of buthionine sulfoximine and its higher homologs, potent inhibitors of glutathione synthesis. J Biol Chem. 1982 Nov 25;257(22):13704–13712. [PubMed] [Google Scholar]
  6. HOLLCROFT J. W., LORENZ E., MATTHEWS M. Factors modifying the effect of x-irradiation on regression of a transplanted lymphosarcoma. J Natl Cancer Inst. 1952 Feb;12(4):751–763. [PubMed] [Google Scholar]
  7. Hoffmann M. E., Meneghini R. Action of hydrogen peroxide on human fibroblast in culture. Photochem Photobiol. 1979 Jul;30(1):151–155. doi: 10.1111/j.1751-1097.1979.tb07128.x. [DOI] [PubMed] [Google Scholar]
  8. Imlay J. A., Chin S. M., Linn S. Toxic DNA damage by hydrogen peroxide through the Fenton reaction in vivo and in vitro. Science. 1988 Apr 29;240(4852):640–642. doi: 10.1126/science.2834821. [DOI] [PubMed] [Google Scholar]
  9. Kaibara N., Ikeda T., Hattori T., Inokuchi K. Experimental studies on enhancing the therapeutic effect of mitomycin-C with hydrogen peroxide. Jpn J Exp Med. 1971 Aug;41(4):323–329. [PubMed] [Google Scholar]
  10. Lippitz B. E., Halperin E. C., Griffith O. W., Colvin O. M., Honore G., Ostertag C. B., Bigner D. D., Friedman H. S. L-buthionine-sulfoximine-mediated radiosensitization in experimental interstitial radiotherapy of intracerebral D-54 MG glioma xenografts in athymic mice. Neurosurgery. 1990 Feb;26(2):255–260. doi: 10.1097/00006123-199002000-00012. [DOI] [PubMed] [Google Scholar]
  11. MAKINO S., TANAKA T. The cytological effects of chemicals on ascites sarcomas. II. Selective damage to tumor cells by CaCl2, AlCl3 and H2O21. Gan. 1953 Mar;44(1):39–46. [PubMed] [Google Scholar]
  12. Madden A., Leach M. O., Collins D. J., Payne G. S. The water resonance as an alternative pH reference: relevance to in vivo 31P NMR localized spectroscopy studies. Magn Reson Med. 1991 Jun;19(2):416–421. doi: 10.1002/mrm.1910190232. [DOI] [PubMed] [Google Scholar]
  13. Mealey J., Jr Regional infusion of vinblastine and hydrogen peroxide in tumor-bearing rats. Cancer Res. 1965 Dec;25(11):1839–1843. [PubMed] [Google Scholar]
  14. Mello Filho A. C., Meneghini R. In vivo formation of single-strand breaks in DNA by hydrogen peroxide is mediated by the Haber-Weiss reaction. Biochim Biophys Acta. 1984 Feb 24;781(1-2):56–63. doi: 10.1016/0167-4781(84)90123-4. [DOI] [PubMed] [Google Scholar]
  15. Michiels C., Remacle J. Use of the inhibition of enzymatic antioxidant systems in order to evaluate their physiological importance. Eur J Biochem. 1988 Nov 1;177(2):435–441. doi: 10.1111/j.1432-1033.1988.tb14393.x. [DOI] [PubMed] [Google Scholar]
  16. Nathan C. F., Cohn Z. A. Antitumor effects of hydrogen peroxide in vivo. J Exp Med. 1981 Nov 1;154(5):1539–1553. doi: 10.1084/jem.154.5.1539. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Philpott G. W., Kulczycki A., Jr, Grass E. H., Parker C. W. Selective binding and cytotoxicity of rat basophilic leukemia cells (RBL-1) with immunoglobulin E-biotin and avidin-glucose oxidase conjugates. J Immunol. 1980 Sep;125(3):1201–1209. [PubMed] [Google Scholar]
  18. Pyatak P. S., Abuchowski A., Davis F. F. Preparation of a polyethylene glycol: superoxide dismutase adduct, and an examination of its blood circulation life and anti-inflammatory activity. Res Commun Chem Pathol Pharmacol. 1980 Jul;29(1):113–127. [PubMed] [Google Scholar]
  19. Roberts J. K., Wade-Jardetzky N., Jardetzky O. Intracellular pH measurements by 31P nuclear magnetic resonance. Influence of factors other than pH on 31P chemical shifts. Biochemistry. 1981 Sep 15;20(19):5389–5394. doi: 10.1021/bi00522a006. [DOI] [PubMed] [Google Scholar]
  20. Rubinstein L. V., Shoemaker R. H., Paull K. D., Simon R. M., Tosini S., Skehan P., Scudiero D. A., Monks A., Boyd M. R. Comparison of in vitro anticancer-drug-screening data generated with a tetrazolium assay versus a protein assay against a diverse panel of human tumor cell lines. J Natl Cancer Inst. 1990 Jul 4;82(13):1113–1118. doi: 10.1093/jnci/82.13.1113. [DOI] [PubMed] [Google Scholar]
  21. SUGIURA K. Effect of hydrogen peroxide on transplanted rat and mouse tumours. Nature. 1958 Nov 8;182(4645):1310–1311. doi: 10.1038/1821310a0. [DOI] [PubMed] [Google Scholar]
  22. Schraufstatter I. U., Hyslop P. A., Hinshaw D. B., Spragg R. G., Sklar L. A., Cochrane C. G. Hydrogen peroxide-induced injury of cells and its prevention by inhibitors of poly(ADP-ribose) polymerase. Proc Natl Acad Sci U S A. 1986 Jul;83(13):4908–4912. doi: 10.1073/pnas.83.13.4908. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. TURNER F. C. Studies with various experimental tumors. Cancer Res. 1953;13(Suppl 1):81–89. [PubMed] [Google Scholar]
  24. Ueda K., Hayaishi O. ADP-ribosylation. Annu Rev Biochem. 1985;54:73–100. doi: 10.1146/annurev.bi.54.070185.000445. [DOI] [PubMed] [Google Scholar]

Articles from British Journal of Cancer are provided here courtesy of Cancer Research UK

RESOURCES