Skip to main content
British Journal of Cancer logoLink to British Journal of Cancer
. 1995 May;71(5):942–944. doi: 10.1038/bjc.1995.182

Nitric oxide inhibition sustains vasopressin-induced vasoconstriction.

M J Dworkin 1, P Carnochan 1, T G Allen-Mersh 1
PMCID: PMC2033775  PMID: 7734317

Abstract

Hepatic parenchymal vasoconstriction increases cytotoxic drug uptake into hepatic metastases by increasing the tumour to liver blood flow ratio. Prolonged infusion of the vasoconstrictor vasopressin does not result in sustained vasoconstriction, and this may limit the benefit of vasopressin in infusional chemotherapy. We have assessed whether loss of vasopressin-induced vasoconstriction is mediated by nitric oxide. Hepatic and tumour blood flow were continuously monitored, in an animal hepatic tumour model, by laser Doppler flowmetry. The response to regionally infused vasopressin and the nitric oxide inhibitor N-nitro-L-arginine methyl ester (L-NAME) were assessed over a 30 min infusion period. The vasopressin-induced vasoconstrictor effect diminished after 15 min despite continued infusion. Vasoconstriction was significantly prolonged when L-NAME was infused in addition to vasopressin. The increase in tumour to normal blood flow ratio was greater over the infusion period when L-NAME was co-administered with vasopressin. Our results suggest that the loss of vasopressin-induced vasoconstriction seen in liver parenchyma after regional infusion is prevented by the nitric oxide synthase inhibitor L-name and may be mediated by nitric oxide.

Full text

PDF
942

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ackerman N. B., Jacobs R., Bloom N. D., Poon T. T. Increased capillary flow in intrahepatic tumors due to alpha-adrenergic effects of catecholamines. Cancer. 1988 Apr 15;61(8):1550–1554. doi: 10.1002/1097-0142(19880415)61:8<1550::aid-cncr2820610811>3.0.co;2-d. [DOI] [PubMed] [Google Scholar]
  2. Allen-Mersh T. G., Earlam S., Fordy C., Abrams K., Houghton J. Quality of life and survival with continuous hepatic-artery floxuridine infusion for colorectal liver metastases. Lancet. 1994 Nov 5;344(8932):1255–1260. doi: 10.1016/s0140-6736(94)90750-1. [DOI] [PubMed] [Google Scholar]
  3. Burton M. A., Gray B. N., Self G. W., Heggie J. C., Townsend P. S. Manipulation of experimental rat and rabbit liver tumor blood flow with angiotensin II. Cancer Res. 1985 Nov;45(11 Pt 1):5390–5393. [PubMed] [Google Scholar]
  4. Conn H. O., Ramsby G. R., Storer E. H. Hepatic arterial escape from vasopressin-induced vasoconstriction: an angiographic investigation. Am J Roentgenol Radium Ther Nucl Med. 1973 Sep;119(1):102–108. doi: 10.2214/ajr.119.1.102. [DOI] [PubMed] [Google Scholar]
  5. Dworkin M. J., Allen-Mersh T. G. Regional infusion chemotherapy for colorectal hepatic metastases--where is it going? Cancer Treat Rev. 1991 Dec;18(4):213–224. doi: 10.1016/0305-7372(91)90013-p. [DOI] [PubMed] [Google Scholar]
  6. Goldberg J. A., Murray T., Kerr D. J., Willmott N., Bessent R. G., McKillop J. H., McArdle C. S. The use of angiotensin II as a potential method of targeting cytotoxic microspheres in patients with intrahepatic tumour. Br J Cancer. 1991 Feb;63(2):308–310. doi: 10.1038/bjc.1991.71. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Hemingway D. M., Chang D., Cooke T. G., Jenkins S. A. The effects of vasopressin infusion on hepatic haemodynamics in an experimental model of liver metastases. Br J Cancer. 1991 Aug;64(2):212–214. doi: 10.1038/bjc.1991.278. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Kawada N., Tran-Thi T. A., Klein H., Decker K. The contraction of hepatic stellate (Ito) cells stimulated with vasoactive substances. Possible involvement of endothelin 1 and nitric oxide in the regulation of the sinusoidal tonus. Eur J Biochem. 1993 Apr 15;213(2):815–823. doi: 10.1111/j.1432-1033.1993.tb17824.x. [DOI] [PubMed] [Google Scholar]
  9. Krylova N. V. Characteristics of microcirculation in experimental tumours. Bibl Anat. 1969;10:301–303. [PubMed] [Google Scholar]
  10. Mathie R. T., Ralevic V., Alexander B., Burnstock G. Nitric oxide is the mediator of ATP-induced dilatation of the rabbit hepatic arterial vascular bed. Br J Pharmacol. 1991 Jun;103(2):1602–1606. doi: 10.1111/j.1476-5381.1991.tb09834.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Moncada S., Palmer R. M., Higgs E. A. Nitric oxide: physiology, pathophysiology, and pharmacology. Pharmacol Rev. 1991 Jun;43(2):109–142. [PubMed] [Google Scholar]
  12. Rougier P., Laplanche A., Huguier M., Hay J. M., Ollivier J. M., Escat J., Salmon R., Julien M., Roullet Audy J. C., Gallot D. Hepatic arterial infusion of floxuridine in patients with liver metastases from colorectal carcinoma: long-term results of a prospective randomized trial. J Clin Oncol. 1992 Jul;10(7):1112–1118. doi: 10.1200/JCO.1992.10.7.1112. [DOI] [PubMed] [Google Scholar]
  13. Sasaki Y., Imaoka S., Hasegawa Y., Nakano S., Ishikawa O., Ohigashi H., Taniguchi K., Koyama H., Iwanaga T., Terasawa T. Changes in distribution of hepatic blood flow induced by intra-arterial infusion of angiotensin II in human hepatic cancer. Cancer. 1985 Jan 15;55(2):311–316. doi: 10.1002/1097-0142(19850115)55:2<311::aid-cncr2820550202>3.0.co;2-m. [DOI] [PubMed] [Google Scholar]

Articles from British Journal of Cancer are provided here courtesy of Cancer Research UK

RESOURCES