Skip to main content
British Journal of Cancer logoLink to British Journal of Cancer
. 1995 May;71(5):1039–1045. doi: 10.1038/bjc.1995.200

Co-culture of human breast adenocarcinoma MCF-7 cells and human dermal fibroblasts enhances the production of matrix metalloproteinases 1, 2 and 3 in fibroblasts.

A Ito 1, S Nakajima 1, Y Sasaguri 1, H Nagase 1, Y Mori 1
PMCID: PMC2033797  PMID: 7734296

Abstract

No measurable amounts of matrix metalloproteinases (MMPs) were produced by human breast adenocarcinoma cell lines MCF-7 and BT-20 in culture. When MCF-7 cells were co-cultured with human dermal fibroblasts enhanced production of precursors of MMP-1 (interstitial collagenase), MMP-2 (gelatinase A), MMP-3 (stromelysin 1) and tissue inhibitor of metalloproteinase type 1 (TIMP-1) was observed. Immunohistochemical studies indicated that these pro-MMPs originated primarily from the fibroblasts, suggesting that MCF-7 cells have a stimulatory effect on stromal cells to produce at least three pro-MMPs and TIMP-1. BT-20 cells also enhanced the production of pro-MMP-2 and TIMP-1 in the dermal fibroblasts, but not of pro-MMP-1 and pro-MMP-3. Normal mammary epithelial cells promoted only TIMP-1 production. To investigate further the stimulatory factors from MCF-7 cells, the conditioned medium and the cell membrane were prepared and examined. The cell membrane fraction enhanced the production of pro-MMP-1 and -3 and TIMP-1, but not of pro-MMP-2. The conditioned medium, on the other hand, augmented the production of all four proteins in the fibroblasts. These observations suggest that breast adenocarcinoma MCF-7 cells in culture produce both soluble and membrane-bound factor(s) which stimulate the production of pro-MMPs and TIMP-1 in neighbouring stromal cells, but the factor(s) released into the medium and that associated with cell membranes are probably different. Such communication between the normal and malignant cell types may, in part, assist the cancer cells to invade and metastasise.

Full text

PDF
1039

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Albini A., Melchiori A., Santi L., Liotta L. A., Brown P. D., Stetler-Stevenson W. G. Tumor cell invasion inhibited by TIMP-2. J Natl Cancer Inst. 1991 Jun 5;83(11):775–779. doi: 10.1093/jnci/83.11.775. [DOI] [PubMed] [Google Scholar]
  2. Baici A., Gyger-Marazzi M., Sträuli P. Extracellular cysteine proteinase and collagenase activities as a consequence of tumor-host interaction in the rabbit V2 carcinoma. Invasion Metastasis. 1984;4(1):13–27. [PubMed] [Google Scholar]
  3. Ballin M., Gomez D. E., Sinha C. C., Thorgeirsson U. P. Ras oncogene mediated induction of a 92 kDa metalloproteinase; strong correlation with the malignant phenotype. Biochem Biophys Res Commun. 1988 Aug 15;154(3):832–838. doi: 10.1016/0006-291x(88)90215-x. [DOI] [PubMed] [Google Scholar]
  4. Bates S. E., Davidson N. E., Valverius E. M., Freter C. E., Dickson R. B., Tam J. P., Kudlow J. E., Lippman M. E., Salomon D. S. Expression of transforming growth factor alpha and its messenger ribonucleic acid in human breast cancer: its regulation by estrogen and its possible functional significance. Mol Endocrinol. 1988 Jun;2(6):543–555. doi: 10.1210/mend-2-6-543. [DOI] [PubMed] [Google Scholar]
  5. Bernhard E. J., Muschel R. J., Hughes E. N. Mr 92,000 gelatinase release correlates with the metastatic phenotype in transformed rat embryo cells. Cancer Res. 1990 Jul 1;50(13):3872–3877. [PubMed] [Google Scholar]
  6. Biswas C., Bloch K. J., Gross J. Collagenolytic activity of rabbit V2 carcinoma implanted in the nude mouse. J Natl Cancer Inst. 1982 Dec;69(6):1329–1336. [PubMed] [Google Scholar]
  7. Biswas C. Collagenase stimulation in cocultures of human fibroblasts and human tumor cells. Cancer Lett. 1984 Sep;24(2):201–207. doi: 10.1016/0304-3835(84)90137-x. [DOI] [PubMed] [Google Scholar]
  8. Biswas C., Nugent M. A. Membrane association of collagenase stimulatory factor(s) from B-16 melanoma cells. J Cell Biochem. 1987 Nov;35(3):247–258. doi: 10.1002/jcb.240350307. [DOI] [PubMed] [Google Scholar]
  9. Biswas C. Tumor cell stimulation of collagenase production by fibroblasts. Biochem Biophys Res Commun. 1982 Dec 15;109(3):1026–1034. doi: 10.1016/0006-291x(82)92042-3. [DOI] [PubMed] [Google Scholar]
  10. Dabbous M. K., El-Torky M., Haney L., Brinkley S. B., Sobhy N. Collagenase activity in rabbit carcinoma: cell source and cell interactions. Int J Cancer. 1983 Mar 15;31(3):357–364. doi: 10.1002/ijc.2910310317. [DOI] [PubMed] [Google Scholar]
  11. DeClerck Y. A., Perez N., Shimada H., Boone T. C., Langley K. E., Taylor S. M. Inhibition of invasion and metastasis in cells transfected with an inhibitor of metalloproteinases. Cancer Res. 1992 Feb 1;52(3):701–708. [PubMed] [Google Scholar]
  12. DeClerck Y. A., Yean T. D., Chan D., Shimada H., Langley K. E. Inhibition of tumor invasion of smooth muscle cell layers by recombinant human metalloproteinase inhibitor. Cancer Res. 1991 Apr 15;51(8):2151–2157. [PubMed] [Google Scholar]
  13. Ellis S. M., Nabeshima K., Biswas C. Monoclonal antibody preparation and purification of a tumor cell collagenase-stimulatory factor. Cancer Res. 1989 Jun 15;49(12):3385–3391. [PubMed] [Google Scholar]
  14. Garbisa S., Pozzatti R., Muschel R. J., Saffiotti U., Ballin M., Goldfarb R. H., Khoury G., Liotta L. A. Secretion of type IV collagenolytic protease and metastatic phenotype: induction by transfection with c-Ha-ras but not c-Ha-ras plus Ad2-E1a. Cancer Res. 1987 Mar 15;47(6):1523–1528. [PubMed] [Google Scholar]
  15. Gelmann E. P., Thompson E. W., Sommers C. L. Invasive and metastatic properties of MCF-7 cells and rasH-transfected MCF-7 cell lines. Int J Cancer. 1992 Feb 20;50(4):665–669. doi: 10.1002/ijc.2910500431. [DOI] [PubMed] [Google Scholar]
  16. Goslen J. B., Eisen A. Z., Bauer E. A. Stimulation of skin fibroblast collagenase production by a cytokine derived from basal cell carcinomas. J Invest Dermatol. 1985 Aug;85(2):161–164. doi: 10.1111/1523-1747.ep12276589. [DOI] [PubMed] [Google Scholar]
  17. Huff K. K., Kaufman D., Gabbay K. H., Spencer E. M., Lippman M. E., Dickson R. B. Secretion of an insulin-like growth factor-I-related protein by human breast cancer cells. Cancer Res. 1986 Sep;46(9):4613–4619. [PubMed] [Google Scholar]
  18. Imada K., Ito A., Itoh Y., Nagase H., Mori Y. Progesterone increases the production of tissue inhibitor of metalloproteinases-2 in rabbit uterine cervical fibroblasts. FEBS Lett. 1994 Mar 14;341(1):109–112. doi: 10.1016/0014-5793(94)80250-5. [DOI] [PubMed] [Google Scholar]
  19. Ishibashi M., Ito A., Sakyo K., Mori Y. Procollagenase activator produced by rabbit uterine cervical fibroblasts. Biochem J. 1987 Jan 15;241(2):527–534. doi: 10.1042/bj2410527. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Ito A., Nagase H. Evidence that human rheumatoid synovial matrix metalloproteinase 3 is an endogenous activator of procollagenase. Arch Biochem Biophys. 1988 Nov 15;267(1):211–216. doi: 10.1016/0003-9861(88)90025-2. [DOI] [PubMed] [Google Scholar]
  21. Kataoka H., DeCastro R., Zucker S., Biswas C. Tumor cell-derived collagenase-stimulatory factor increases expression of interstitial collagenase, stromelysin, and 72-kDa gelatinase. Cancer Res. 1993 Jul 1;53(13):3154–3158. [PubMed] [Google Scholar]
  22. Knabbe C., Lippman M. E., Wakefield L. M., Flanders K. C., Kasid A., Derynck R., Dickson R. B. Evidence that transforming growth factor-beta is a hormonally regulated negative growth factor in human breast cancer cells. Cell. 1987 Feb 13;48(3):417–428. doi: 10.1016/0092-8674(87)90193-0. [DOI] [PubMed] [Google Scholar]
  23. Kosano H., Kubota T., Ohsawa N., Yamamori S., Abe O., Inagaki H., Nagata N. Growth-inhibitory action of an estrogen-chlorambucil conjugate (KM2210) in human breast cancer cell line MCF-7: its relation to reduction of estrogen receptor and transforming growth factor-alpha secretion. Cancer Res. 1992 Mar 1;52(5):1187–1191. [PubMed] [Google Scholar]
  24. Kosano H., Takatani O. Inhibition by an alkyl-lysophospholipid of the uptake of epidermal growth factor in human breast cancer cell lines in relation to epidermal growth factor internalization. Cancer Res. 1989 Jun 1;49(11):2868–2870. [PubMed] [Google Scholar]
  25. Kosano H., Takatani O. Reduction of epidermal growth factor binding in human breast cancer cell lines by an alkyl-lysophospholipid. Cancer Res. 1988 Nov 1;48(21):6033–6036. [PubMed] [Google Scholar]
  26. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  27. Liotta L. A., Stetler-Stevenson W. G. Tumor invasion and metastasis: an imbalance of positive and negative regulation. Cancer Res. 1991 Sep 15;51(18 Suppl):5054s–5059s. [PubMed] [Google Scholar]
  28. Liotta L. A., Stetler-Stevenson W. Metalloproteinases and malignant conversion: does correlation imply causality? J Natl Cancer Inst. 1989 Apr 19;81(8):556–557. doi: 10.1093/jnci/81.8.556. [DOI] [PubMed] [Google Scholar]
  29. Matrisian L. M., Bowden G. T. Stromelysin/transin and tumor progression. Semin Cancer Biol. 1990 Apr;1(2):107–115. [PubMed] [Google Scholar]
  30. Monteagudo C., Merino M. J., San-Juan J., Liotta L. A., Stetler-Stevenson W. G. Immunohistochemical distribution of type IV collagenase in normal, benign, and malignant breast tissue. Am J Pathol. 1990 Mar;136(3):585–592. [PMC free article] [PubMed] [Google Scholar]
  31. Murphy G., Segain J. P., O'Shea M., Cockett M., Ioannou C., Lefebvre O., Chambon P., Basset P. The 28-kDa N-terminal domain of mouse stromelysin-3 has the general properties of a weak metalloproteinase. J Biol Chem. 1993 Jul 25;268(21):15435–15441. [PubMed] [Google Scholar]
  32. Nakajima M., Welch D. R., Belloni P. N., Nicolson G. L. Degradation of basement membrane type IV collagen and lung subendothelial matrix by rat mammary adenocarcinoma cell clones of differing metastatic potentials. Cancer Res. 1987 Sep 15;47(18):4869–4876. [PubMed] [Google Scholar]
  33. Ojima Y., Ito A., Nagase H., Mori Y. Calmodulin regulates the interleukin 1-induced procollagenase production in human uterine cervical fibroblasts. Biochim Biophys Acta. 1989 Mar 28;1011(1):61–66. doi: 10.1016/0167-4889(89)90079-7. [DOI] [PubMed] [Google Scholar]
  34. Okada Y., Tsuchiya H., Shimizu H., Tomita K., Nakanishi I., Sato H., Seiki M., Yamashita K., Hayakawa T. Induction and stimulation of 92-kDa gelatinase/type IV collagenase production in osteosarcoma and fibrosarcoma cell lines by tumor necrosis factor alpha. Biochem Biophys Res Commun. 1990 Sep 14;171(2):610–617. doi: 10.1016/0006-291x(90)91190-4. [DOI] [PubMed] [Google Scholar]
  35. Prescott J., Troccoli N., Biswas C. Coordinate increase in collagenase mRNA and enzyme levels in human fibroblasts treated with the tumor cell factor, TCSF. Biochem Int. 1989 Aug;19(2):257–266. [PubMed] [Google Scholar]
  36. Pyke C., Ralfkiaer E., Huhtala P., Hurskainen T., Danø K., Tryggvason K. Localization of messenger RNA for Mr 72,000 and 92,000 type IV collagenases in human skin cancers by in situ hybridization. Cancer Res. 1992 Mar 1;52(5):1336–1341. [PubMed] [Google Scholar]
  37. Sasaguri Y., Komiya S., Sugama K., Suzuki K., Inoue A., Morimatsu M., Nagase H. Production of matrix metalloproteinases 2 and 3 (stromelysin) by stromal cells of giant cell tumor of bone. Am J Pathol. 1992 Sep;141(3):611–621. [PMC free article] [PubMed] [Google Scholar]
  38. Schultz R. M., Silberman S., Persky B., Bajkowski A. S., Carmichael D. F. Inhibition by human recombinant tissue inhibitor of metalloproteinases of human amnion invasion and lung colonization by murine B16-F10 melanoma cells. Cancer Res. 1988 Oct 1;48(19):5539–5545. [PubMed] [Google Scholar]
  39. Shafie S. M., Liotta L. A. Formation of metastasis by human breast carcinoma cells (MCF-7) in nude mice. Cancer Lett. 1980 Dec;11(2):81–87. doi: 10.1016/0304-3835(80)90097-x. [DOI] [PubMed] [Google Scholar]
  40. Shi Y. E., Torri J., Yieh L., Wellstein A., Lippman M. E., Dickson R. B. Identification and characterization of a novel matrix-degrading protease from hormone-dependent human breast cancer cells. Cancer Res. 1993 Mar 15;53(6):1409–1415. [PubMed] [Google Scholar]
  41. Takahashi S., Sato T., Ito A., Ojima Y., Hosono T., Nagase H., Mori Y. Involvement of protein kinase C in the interleukin 1 alpha-induced gene expression of matrix metalloproteinases and tissue inhibitor-1 of metalloproteinases (TIMP-1) in human uterine cervical fibroblasts. Biochim Biophys Acta. 1993 Dec 16;1220(1):57–65. doi: 10.1016/0167-4889(93)90097-9. [DOI] [PubMed] [Google Scholar]
  42. Ura H., Bonfil R. D., Reich R., Reddel R., Pfeifer A., Harris C. C., Klein-Szanto A. J. Expression of type IV collagenase and procollagen genes and its correlation with the tumorigenic, invasive, and metastatic abilities of oncogene-transformed human bronchial epithelial cells. Cancer Res. 1989 Aug 15;49(16):4615–4621. [PubMed] [Google Scholar]
  43. Wilhelm S. M., Collier I. E., Marmer B. L., Eisen A. Z., Grant G. A., Goldberg G. I. SV40-transformed human lung fibroblasts secrete a 92-kDa type IV collagenase which is identical to that secreted by normal human macrophages. J Biol Chem. 1989 Oct 15;264(29):17213–17221. [PubMed] [Google Scholar]
  44. Yamagata S., Tanaka R., Ito Y., Shimizu S. Gelatinases of murine metastatic tumor cells. Biochem Biophys Res Commun. 1989 Jan 16;158(1):228–234. doi: 10.1016/s0006-291x(89)80202-5. [DOI] [PubMed] [Google Scholar]

Articles from British Journal of Cancer are provided here courtesy of Cancer Research UK

RESOURCES