Skip to main content
British Journal of Cancer logoLink to British Journal of Cancer
. 1995 Sep;72(3):589–594. doi: 10.1038/bjc.1995.378

Enhancement of photodynamic therapy with 5-aminolaevulinic acid-induced porphyrin photosensitisation in normal rat colon by threshold and light fractionation studies.

H Messmann 1, P Mlkvy 1, G Buonaccorsi 1, C L Davies 1, A J MacRobert 1, S G Bown 1
PMCID: PMC2033889  PMID: 7669566

Abstract

5-Aminolaevulinic acid (ALA)-induced prophyrin photosensitisation is an attractive option for photodynamic therapy (PDT) since skin photosensitivity is limited to 1-2 days. However, early clinical results on colon tumours using the maximum tolerated oral dose of 60 mg kg-1 showed only superficial necrosis, presumably owing to insufficient intratumoral porphyrin levels, although inadequate light dosimetry may also be a factor. We undertook experiments using ALA, 25-400 mg kg-1 intravenously, to establish the threshold doses required for a PDT effect. Laser light at 630 nm (100 mW, 10-200 J) was delivered to a single site in the colon of photosensitised normal Wistar rats at laparotomy. The animals were killed 3 days later and the area of PDT-induced necrosis measured. No lesion was seen with 25 mg kg-1. The lesion size increased with larger ALA doses and with the light dose but little benefit was seen from increasing the ALA dose above 200 mg kg-1 or the light dose above 100 J. Thus there is a fairly narrow window for optimum doses of drug and light. Further experiments showed that the PDT effect can be markedly enhanced by fractionating the light dose. A series of animals was sensitized with 200 mg kg-1 ALA and then treated with 25 J. With continuous irradiation, the lesion area was 13 mm2, but with a single interruption of 150 s the area rose to 94 mm2 with the same total energy. Results were basically similar for different intervals between fractions (10-900 s) and different numbers of fractions (2-25). This suggests that a single short interruption in the light irradiation may dramatically reduce the net light dose required to achieve extensive necrosis.

Full text

PDF
589

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barr H., Tralau C. J., Boulos P. B., MacRobert A. J., Krasner N., Phillips D., Bown S. G. Selective necrosis in dimethylhydrazine-induced rat colon tumors using phthalocyanine photodynamic therapy. Gastroenterology. 1990 Jun;98(6):1532–1537. doi: 10.1016/0016-5085(90)91086-l. [DOI] [PubMed] [Google Scholar]
  2. Barr H., Tralau C. J., Boulos P. B., MacRobert A. J., Tilly R., Bown S. G. The contrasting mechanisms of colonic collagen damage between photodynamic therapy and thermal injury. Photochem Photobiol. 1987 Nov;46(5):795–800. doi: 10.1111/j.1751-1097.1987.tb04850.x. [DOI] [PubMed] [Google Scholar]
  3. Barr H., Tralau C. J., MacRobert A. J., Krasner N., Boulos P. B., Clark C. G., Bown S. G. Photodynamic therapy in the normal rat colon with phthalocyanine sensitisation. Br J Cancer. 1987 Aug;56(2):111–118. doi: 10.1038/bjc.1987.166. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bedwell J., Chatlani P. T., MacRobert A. J., Roberts J. E., Barr H., Dillon J., Bown S. G. Enhanced tumour selectivity of photodynamic therapy in the rat colon using a radioprotective agent. Photochem Photobiol. 1991 Jun;53(6):753–756. doi: 10.1111/j.1751-1097.1991.tb09888.x. [DOI] [PubMed] [Google Scholar]
  5. Bedwell J., MacRobert A. J., Phillips D., Bown S. G. Fluorescence distribution and photodynamic effect of ALA-induced PP IX in the DMH rat colonic tumour model. Br J Cancer. 1992 Jun;65(6):818–824. doi: 10.1038/bjc.1992.175. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Bown S. G. Photodynamic therapy to scientists and clinicians--one world or two? J Photochem Photobiol B. 1990 Jun;6(1-2):1–12. doi: 10.1016/1011-1344(90)85069-9. [DOI] [PubMed] [Google Scholar]
  7. Bown S. G., Tralau C. J., Smith P. D., Akdemir D., Wieman T. J. Photodynamic therapy with porphyrin and phthalocyanine sensitisation: quantitative studies in normal rat liver. Br J Cancer. 1986 Jul;54(1):43–52. doi: 10.1038/bjc.1986.150. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Cowled P. A., Forbes I. J. Photocytotoxicity in vivo of haematoporphyrin derivative components. Cancer Lett. 1985 Aug;28(1):111–118. doi: 10.1016/0304-3835(85)90099-0. [DOI] [PubMed] [Google Scholar]
  9. Cowled P. A., Grace J. R., Forbes I. J. Comparison of the efficacy of pulsed and continuous-wave red laser light in induction of photocytotoxicity by haematoporphyrin derivative. Photochem Photobiol. 1984 Jan;39(1):115–117. doi: 10.1111/j.1751-1097.1984.tb03414.x. [DOI] [PubMed] [Google Scholar]
  10. Ferrario A., Rucker N., Ryter S. W., Doiron D. R., Gomer C. J. Direct comparison of in-vitro and in-vivo Photofrin-II mediated photosensitization using a pulsed KTP pumped dye laser and a continuous wave argon ion pumped dye laser. Lasers Surg Med. 1991;11(5):404–410. doi: 10.1002/lsm.1900110504. [DOI] [PubMed] [Google Scholar]
  11. Fingar V. H., Henderson B. W. Drug and light dose dependence of photodynamic therapy: a study of tumor and normal tissue response. Photochem Photobiol. 1987 Nov;46(5):837–841. doi: 10.1111/j.1751-1097.1987.tb04856.x. [DOI] [PubMed] [Google Scholar]
  12. Foster T. H., Murant R. S., Bryant R. G., Knox R. S., Gibson S. L., Hilf R. Oxygen consumption and diffusion effects in photodynamic therapy. Radiat Res. 1991 Jun;126(3):296–303. doi: 10.2307/3577919. [DOI] [PubMed] [Google Scholar]
  13. Gibson S. L., Hilf R. Interdependence of fluence, drug dose and oxygen on hematoporphyrin derivative induced photosensitization of tumor mitochondria. Photochem Photobiol. 1985 Oct;42(4):367–373. doi: 10.1111/j.1751-1097.1985.tb01583.x. [DOI] [PubMed] [Google Scholar]
  14. Grant W. E., Hopper C., MacRobert A. J., Speight P. M., Bown S. G. Photodynamic therapy of oral cancer: photosensitisation with systemic aminolaevulinic acid. Lancet. 1993 Jul 17;342(8864):147–148. doi: 10.1016/0140-6736(93)91347-o. [DOI] [PubMed] [Google Scholar]
  15. Henderson B. W., Bellnier D. A., Ziring B., Dougherty T. J. Aspects of the cellular uptake and retention of hematoporphyrin derivative and their correlation with the biological response to PRT in vitro. Adv Exp Med Biol. 1983;160:129–138. doi: 10.1007/978-1-4684-4406-3_13. [DOI] [PubMed] [Google Scholar]
  16. Kennedy J. C., Pottier R. H. Endogenous protoporphyrin IX, a clinically useful photosensitizer for photodynamic therapy. J Photochem Photobiol B. 1992 Jul 30;14(4):275–292. doi: 10.1016/1011-1344(92)85108-7. [DOI] [PubMed] [Google Scholar]
  17. Klausner J. M., Paterson I. S., Kobzik L., Valeri C. R., Shepro D., Hechtman H. B. Oxygen free radicals mediate ischemia-induced lung injury. Surgery. 1989 Feb;105(2 Pt 1):192–199. [PubMed] [Google Scholar]
  18. König K., Schneckenburger H., Rück A., Steiner R. In vivo photoproduct formation during PDT with ALA-induced endogenous porphyrins. J Photochem Photobiol B. 1993 May;18(2-3):287–290. doi: 10.1016/1011-1344(93)80077-m. [DOI] [PubMed] [Google Scholar]
  19. Loh C. S., Bedwell J., MacRobert A. J., Krasner N., Phillips D., Bown S. G. Photodynamic therapy of the normal rat stomach: a comparative study between di-sulphonated aluminium phthalocyanine and 5-aminolaevulinic acid. Br J Cancer. 1992 Sep;66(3):452–462. doi: 10.1038/bjc.1992.295. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Loh C. S., MacRobert A. J., Bedwell J., Regula J., Krasner N., Bown S. G. Oral versus intravenous administration of 5-aminolaevulinic acid for photodynamic therapy. Br J Cancer. 1993 Jul;68(1):41–51. doi: 10.1038/bjc.1993.284. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Loh C. S., Vernon D., MacRobert A. J., Bedwell J., Bown S. G., Brown S. B. Endogenous porphyrin distribution induced by 5-aminolaevulinic acid in the tissue layers of the gastrointestinal tract. J Photochem Photobiol B. 1993 Sep;20(1):47–54. doi: 10.1016/1011-1344(93)80130-2. [DOI] [PubMed] [Google Scholar]
  22. Malik Z., Djaldetti M. 5-Aminolevulinic acid stimulation of porphyrin and hemoglobin synthesis by uninduced Friend erythroleukemic cells. Cell Differ. 1979 Jun;8(3):223–233. doi: 10.1016/0045-6039(79)90049-6. [DOI] [PubMed] [Google Scholar]
  23. Malik Z., Lugaci H. Destruction of erythroleukaemic cells by photoactivation of endogenous porphyrins. Br J Cancer. 1987 Nov;56(5):589–595. doi: 10.1038/bjc.1987.246. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Marriott J. Regulation of porphyrin synthesis. Biochem Soc Symp. 1968;28:61–74. [PubMed] [Google Scholar]
  25. McMahon K. S., Wieman T. J., Moore P. H., Fingar V. H. Effects of photodynamic therapy using mono-L-aspartyl chlorin e6 on vessel constriction, vessel leakage, and tumor response. Cancer Res. 1994 Oct 15;54(20):5374–5379. [PubMed] [Google Scholar]
  26. Panjehpour M., Overholt B. F., DeNovo R. C., Petersen M. G., Sneed R. E. Comparative study between pulsed and continuous wave lasers for Photofrin photodynamic therapy. Lasers Surg Med. 1993;13(3):296–304. doi: 10.1002/lsm.1900130306. [DOI] [PubMed] [Google Scholar]
  27. Pe M. B., Ikeda H., Inokuchi T. Tumour destruction and proliferation kinetics following periodic, low power light, haematoporphyrin oligomers mediated photodynamic therapy in the mouse tongue. Eur J Cancer B Oral Oncol. 1994 May;30B(3):174–178. doi: 10.1016/0964-1955(94)90087-6. [DOI] [PubMed] [Google Scholar]
  28. Pottier R. H., Chow Y. F., LaPlante J. P., Truscott T. G., Kennedy J. C., Beiner L. A. Non-invasive technique for obtaining fluorescence excitation and emission spectra in vivo. Photochem Photobiol. 1986 Nov;44(5):679–687. doi: 10.1111/j.1751-1097.1986.tb04726.x. [DOI] [PubMed] [Google Scholar]
  29. Regula J., MacRobert A. J., Gorchein A., Buonaccorsi G. A., Thorpe S. M., Spencer G. M., Hatfield A. R., Bown S. G. Photosensitisation and photodynamic therapy of oesophageal, duodenal, and colorectal tumours using 5 aminolaevulinic acid induced protoporphyrin IX--a pilot study. Gut. 1995 Jan;36(1):67–75. doi: 10.1136/gut.36.1.67. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Regula J., Ravi B., Bedwell J., MacRobert A. J., Bown S. G. Photodynamic therapy using 5-aminolaevulinic acid for experimental pancreatic cancer--prolonged animal survival. Br J Cancer. 1994 Aug;70(2):248–254. doi: 10.1038/bjc.1994.288. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Sima A. A., Kennedy J. C., Blakeslee D., Robertson D. M. Experimental porphyric neuropathy: a preliminary report. Can J Neurol Sci. 1981 May;8(2):105–113. doi: 10.1017/s0317167100042992. [DOI] [PubMed] [Google Scholar]
  32. Star W. M., Marijnissen H. P., van den Berg-Blok A. E., Versteeg J. A., Franken K. A., Reinhold H. S. Destruction of rat mammary tumor and normal tissue microcirculation by hematoporphyrin derivative photoradiation observed in vivo in sandwich observation chambers. Cancer Res. 1986 May;46(5):2532–2540. [PubMed] [Google Scholar]
  33. Weishaupt K. R., Gomer C. J., Dougherty T. J. Identification of singlet oxygen as the cytotoxic agent in photoinactivation of a murine tumor. Cancer Res. 1976 Jul;36(7 Pt 1):2326–2329. [PubMed] [Google Scholar]
  34. Wieman T. J., Fingar V. H. Photodynamic therapy. Surg Clin North Am. 1992 Jun;72(3):609–622. doi: 10.1016/s0039-6109(16)45736-1. [DOI] [PubMed] [Google Scholar]
  35. van der Veen N., van Leengoed H. L., Star W. M. In vivo fluorescence kinetics and photodynamic therapy using 5-aminolaevulinic acid-induced porphyrin: increased damage after multiple irradiations. Br J Cancer. 1994 Nov;70(5):867–872. doi: 10.1038/bjc.1994.412. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from British Journal of Cancer are provided here courtesy of Cancer Research UK

RESOURCES