Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1986 Jul;52(1):51–58. doi: 10.1128/aem.52.1.51-58.1986

Proteolytic activity of the ruminal bacterium Butyrivibrio fibrisolvens.

M A Cotta, R B Hespell
PMCID: PMC203391  PMID: 3524460

Abstract

The proteolytic activity of Butyrivibrio fibrisolvens, a ubiquitously distributed bacterial species in the gastrointestinal tracts of ruminants and other mammals, was characterized. The relative proteolytic activity (micrograms of azocasein degraded per hour per milligram of protein) varied greatly with the strain: 0 to 1 for strains D1, D16f, E21C, and X6C61; 7 to 15 for strains IL631, NOR37, S2, LM8/1B, and X10C34; and 90 to 590 for strains 12, 49 H17C, CF4c, CF3, CF1B, and R28. The activity levels of the last group of strains were equal to or greater than those found with Bacteroides amylophilus or Bacteroides ruminicola. With the exception of strain R28 activity, 90% or more of the proteolytic activity was associated with the culture fluid and not the cells. Strain 49 produced proteolytic activity constitutively, but the level of activity (units per milligram of protein) was modulated by growth parameters. With various carbohydrates added to the growth medium, the proteolytic activities of strain 49 were positively correlated with the growth rate. However, when the growth rate varied with the use of different nitrogen sources, a similar correlation was not found. The highest activity level was observed with Casamino Acids (1 g/liter), but this level was reduced by ca. 70% with Trypticase (BBL Microbiology Systems, Cockeysville, Md.) or casein (1 g/liter) and by 85% with ammonium chloride (10 mM) as the sole nitrogen source. The addition of ammonium chloride (1 to 10 mM) to media with low levels of Casamino Acids or Trypticase resulted in lower proteolytic activities but not as low as seen when the complex nitrogen sources were increased to high levels (20 g/liter).(ABSTRACT TRUNCATED AT 250 WORDS)

Full text

PDF
51

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. APPLEBY J. C. The isolation and classification of proteolytic bacteria from the rumen of the sheep. J Gen Microbiol. 1955 Jun;12(3):526–533. doi: 10.1099/00221287-12-3-526. [DOI] [PubMed] [Google Scholar]
  2. Akin D. E. Ultrastructure of rumen bacterial attachment to forage cell walls. Appl Environ Microbiol. 1976 Apr;31(4):562–568. doi: 10.1128/aem.31.4.562-568.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. BLACKBURN T. H., HOBSON P. N. Further studies on the isolation of proteolytic bacteria from the sheep rumen. J Gen Microbiol. 1962 Sep;29:69–81. doi: 10.1099/00221287-29-1-69. [DOI] [PubMed] [Google Scholar]
  4. BLACKBURN T. H., HOBSON P. N. Isolation of proteolytic bacteria from the sheep rumen. J Gen Microbiol. 1960 Feb;22:282–289. doi: 10.1099/00221287-22-1-282. [DOI] [PubMed] [Google Scholar]
  5. BLACKBURN T. H., HOBSON P. N. Proteolysis in the sheep rumen by whole and fractionated rumen contents. J Gen Microbiol. 1960 Feb;22:272–281. doi: 10.1099/00221287-22-1-272. [DOI] [PubMed] [Google Scholar]
  6. BRYANT M. P., SMALL N., BOUMA C., CHU H. Bacteroides ruminicola n. sp. and Succinimonas amylolytica; the new genus and species; species of succinic acid-producing anaerobic bacteria of the bovine rumen. J Bacteriol. 1958 Jul;76(1):15–23. doi: 10.1128/jb.76.1.15-23.1958. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. BRYANT M. P., SMALL N. The anaerobic monotrichous butyric acid-producing curved rod-shaped bacteria of the rumen. J Bacteriol. 1956 Jul;72(1):16–21. doi: 10.1128/jb.72.1.16-21.1956. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Blackburn T. H., Hallah W. A. The cell-bound protease of Bacteroides amylophilus H18. Can J Microbiol. 1974 Apr;20(4):435–441. doi: 10.1139/m74-068. [DOI] [PubMed] [Google Scholar]
  9. Blackburn T. H. The protease liberated from Bacteroides amylophilus strain H18 by mechanical disintegration. J Gen Microbiol. 1968 Aug;53(1):37–51. doi: 10.1099/00221287-53-1-37. [DOI] [PubMed] [Google Scholar]
  10. Bladen H. A., Bryant M. P., Doetsch R. N. A Study of Bacterial Species from the Rumen Which Produce Ammonia from Protein Hydrolyzate. Appl Microbiol. 1961 Mar;9(2):175–180. doi: 10.1128/am.9.2.175-180.1961. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
  12. Brock F. M., Forsberg C. W., Buchanan-Smith J. G. Proteolytic activity of rumen microorganisms and effects of proteinase inhibitors. Appl Environ Microbiol. 1982 Sep;44(3):561–569. doi: 10.1128/aem.44.3.561-569.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Caldwell D. R., Bryant M. P. Medium without rumen fluid for nonselective enumeration and isolation of rumen bacteria. Appl Microbiol. 1966 Sep;14(5):794–801. doi: 10.1128/am.14.5.794-801.1966. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Cheng K. J., Costerton J. W. Ultrastructure of Butyrivibrio fibrisolvens: a gram-positive bacterium. J Bacteriol. 1977 Mar;129(3):1506–1512. doi: 10.1128/jb.129.3.1506-1512.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. FULGHUM R. S., MOORE W. E. ISOLATION, ENUMERATION, AND CHARACTERISTICS OF PROTEOLYTIC RUMINAL BACTERIA. J Bacteriol. 1963 Apr;85:808–815. doi: 10.1128/jb.85.4.808-815.1963. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Gloor L., Klubek B., Seidler R. J. Molecular heterogeneity of the bdellovibrios: metallo and serine proteases unique to each species. Arch Mikrobiol. 1974 Mar 1;95(1):45–56. doi: 10.1007/BF02451747. [DOI] [PubMed] [Google Scholar]
  17. Gomez-Alarcon R. A., O'Dowd C., Leedle J. A., Bryant M. P. 1,4-Naphthoquinone and other nutrient requirements of Succinivibrio dextrinosolvens. Appl Environ Microbiol. 1982 Aug;44(2):346–350. doi: 10.1128/aem.44.2.346-350.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. HUNT W. G., MOORE R. O. The proteolytic system of a gram negative rod isolated from the bovine rumen. Appl Microbiol. 1958 Jan;6(1):36–39. doi: 10.1128/am.6.1.36-39.1958. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Hazlewood G. P., Edwards R. Proteolytic activities of a rumen bacterium, Bacteroides ruminicola R8/4. J Gen Microbiol. 1981 Jul;125(1):11–15. doi: 10.1099/00221287-125-1-11. [DOI] [PubMed] [Google Scholar]
  20. Hazlewood G. P., Orpin C. G., Greenwood Y., Black M. E. Isolation of proteolytic rumen bacteria by use of selective medium containing leaf fraction 1 protein (ribulosebisphosphate carboxylase). Appl Environ Microbiol. 1983 Jun;45(6):1780–1784. doi: 10.1128/aem.45.6.1780-1784.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Kopecny J., Wallace R. J. Cellular location and some properties of proteolytic enzymes of rumen bacteria. Appl Environ Microbiol. 1982 May;43(5):1026–1033. doi: 10.1128/aem.43.5.1026-1033.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  23. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  24. Leedle J. A., Hespell R. B. Differential carbohydrate media and anaerobic replica plating techniques in delineating carbohydrate-utilizing subgroups in rumen bacterial populations. Appl Environ Microbiol. 1980 Apr;39(4):709–719. doi: 10.1128/aem.39.4.709-719.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Lesk E. M., Blackburn T. H. Purification of Bacteroides amylophilus protease. J Bacteriol. 1971 May;106(2):394–402. doi: 10.1128/jb.106.2.394-402.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Pacaud M., Richaud C. Protease II from Escherichia coli. Purification and characterization. J Biol Chem. 1975 Oct 10;250(19):7771–7779. [PubMed] [Google Scholar]
  27. Patterson J. A., Hespell R. B. Glutamine synthetase activity in the ruminal bacterium Succinivibrio dextrinosolvens. Appl Environ Microbiol. 1985 Oct;50(4):1014–1020. doi: 10.1128/aem.50.4.1014-1020.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Smith C. J., Hespell R. B., Bryant M. P. Ammonia assimilation and glutamate formation in the anaerobe Selenomonas ruminantium. J Bacteriol. 1980 Feb;141(2):593–602. doi: 10.1128/jb.141.2.593-602.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Smith C. J., Hespell R. B., Bryant M. P. Regulation of urease and ammonia assimilatory enzymes in Selenomonas ruminantium. Appl Environ Microbiol. 1981 Jul;42(1):89–96. doi: 10.1128/aem.42.1.89-96.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Stack R. J., Hungate R. E. Effect of 3-Phenylpropanoic Acid on Capsule and Cellulases of Ruminococcus albus 8. Appl Environ Microbiol. 1984 Jul;48(1):218–223. doi: 10.1128/aem.48.1.218-223.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES