Abstract
Large fluctuations in glutathione content were observed on a daily basis using the Tietze enzyme recycling assay in a panel of six human cell lines of varying radiosensitivity. Glutathione content tended to increase to a maximum during exponential cell proliferation, and then decreased at different rates as the cells approached plateau phase. By reference to high-performance liquid chromatography and flow cytometry of the fluorescent bimane derivative we were able to verify that these changes were real. However, the Tietze assay was occasionally unable to detect glutathione in two of our cell lines (MGH-U1 and AT5BIVA), although the other methods indicated its presence. The existence of an inhibitory activity responsible for these anomalies was confirmed through spiking our samples with known amounts of glutathione. We were unable to detect a direct relationship between cellular glutathione concentration and aerobic radiosensitivity in our panel of cell lines.
Full text
PDFSelected References
These references are in PubMed. This may not be the complete list of references from this article.
- ALPER T., HOWARD-FLANDERS P. Role of oxygen in modifying the radiosensitivity of E. coli B. Nature. 1956 Nov 3;178(4540):978–979. doi: 10.1038/178978a0. [DOI] [PubMed] [Google Scholar]
- Aguilera J. A., Newton G. L., Fahey R. C., Ward J. F. Thiol uptake by Chinese hamster V79 cells and aerobic radioprotection as a function of the net charge on the thiol. Radiat Res. 1992 May;130(2):194–204. [PubMed] [Google Scholar]
- Arlett C. F., Green M. H., Priestley A., Harcourt S. A., Mayne L. V. Comparative human cellular radiosensitivity: I. The effect of SV40 transformation and immortalisation on the gamma-irradiation survival of skin derived fibroblasts from normal individuals and from ataxia-telangiectasia patients and heterozygotes. Int J Radiat Biol. 1988 Dec;54(6):911–928. doi: 10.1080/09553008814552321. [DOI] [PubMed] [Google Scholar]
- Astor M. B., Hall E. J., Biaglow J. E., Hartog B. Effects of D,L-buthionine-S,R-sulfoximine on cellular thiol levels and the oxygen effect in Chinese hamster V79 cells. Int J Radiat Oncol Biol Phys. 1984 Aug;10(8):1239–1242. doi: 10.1016/0360-3016(84)90325-0. [DOI] [PubMed] [Google Scholar]
- BUZARD J. A., KOPKO F. The flavin requirement and some inhibition characteristics of rat tissue glutathione reductase. J Biol Chem. 1963 Jan;238:464–468. [PubMed] [Google Scholar]
- Batist G., Behrens B. C., Makuch R., Hamilton T. C., Katki A. G., Louie K. G., Myers C. E., Ozols R. F. Serial determinations of glutathione levels and glutathione-related enzyme activities in human tumor cells in vitro. Biochem Pharmacol. 1986 Jul 1;35(13):2257–2259. doi: 10.1016/0006-2952(86)90601-5. [DOI] [PubMed] [Google Scholar]
- Biaglow J. E., Mitchell J. B., Held K. The importance of peroxide and superoxide in the X-ray response. Int J Radiat Oncol Biol Phys. 1992;22(4):665–669. doi: 10.1016/0360-3016(92)90499-8. [DOI] [PubMed] [Google Scholar]
- Biaglow J. E., Varnes M. E., Clark E. P., Epp E. R. The role of thiols in cellular response to radiation and drugs. Radiat Res. 1983 Sep;95(3):437–455. [PubMed] [Google Scholar]
- Biaglow J. E., Varnes M. E., Epp E. R., Clark E. P., Astor M. Factors involved in depletion of glutathione from A549 human lung carcinoma cells: implications for radiotherapy. Int J Radiat Oncol Biol Phys. 1984 Aug;10(8):1221–1227. doi: 10.1016/0360-3016(84)90322-5. [DOI] [PubMed] [Google Scholar]
- Brigelius R., Muckel C., Akerboom T. P., Sies H. Identification and quantitation of glutathione in hepatic protein mixed disulfides and its relationship to glutathione disulfide. Biochem Pharmacol. 1983 Sep 1;32(17):2529–2534. doi: 10.1016/0006-2952(83)90014-x. [DOI] [PubMed] [Google Scholar]
- Britten R. A., Warenius H. M., White R., Browning P. G., Green J. A. Melphalan resistant human ovarian tumour cells are cross-resistant to photons, but not to high LET neutrons. Radiother Oncol. 1990 Aug;18(4):357–363. doi: 10.1016/0167-8140(90)90116-e. [DOI] [PubMed] [Google Scholar]
- Bump E. A., Brown J. M. Role of glutathione in the radiation response of mammalian cells in vitro and in vivo. Pharmacol Ther. 1990;47(1):117–136. doi: 10.1016/0163-7258(90)90048-7. [DOI] [PubMed] [Google Scholar]
- Carmichael J., Park J. G., Degraff W. G., Gamson J., Gazdar A. F., Mitchell J. B. Radiation sensitivity and study of glutathione and related enzymes in human colorectal cancer cell lines. Eur J Cancer Clin Oncol. 1988 Jul;24(7):1219–1224. doi: 10.1016/0277-5379(88)90131-9. [DOI] [PubMed] [Google Scholar]
- Clark E. P., Epp E. R., Morse-Gaudio M., Biaglow J. E. The role of glutathione in the aerobic radioresponse. I. Sensitization and recovery in the absence of intracellular glutathione. Radiat Res. 1986 Dec;108(3):238–250. [PubMed] [Google Scholar]
- Cook J. A., Pass H. I., Russo A., Iype S., Mitchell J. B. Use of monochlorobimane for glutathione measurements in hamster and human tumor cell lines. Int J Radiat Oncol Biol Phys. 1989 May;16(5):1321–1324. doi: 10.1016/0360-3016(89)90307-6. [DOI] [PubMed] [Google Scholar]
- Deacon J. M., Wilson P. A., Peckham M. J. The radiobiology of human neuroblastoma. Radiother Oncol. 1985 Apr;3(3):201–209. doi: 10.1016/s0167-8140(85)80029-3. [DOI] [PubMed] [Google Scholar]
- Dean S. W. Some aspects of glutathione metabolism in ataxia-telangiectasia fibroblasts. Int J Radiat Biol Relat Stud Phys Chem Med. 1987 Jul;52(1):43–48. doi: 10.1080/09553008714551461. [DOI] [PubMed] [Google Scholar]
- Debieu D., Deschavanne P. J., Midander J., Larsson A., Malaise E. P. Survival curves of glutathione synthetase deficient human fibroblasts: correlation between radiosensitivity in hypoxia and glutathione synthetase activity. Int J Radiat Biol Relat Stud Phys Chem Med. 1985 Oct;48(4):525–543. doi: 10.1080/09553008514551591. [DOI] [PubMed] [Google Scholar]
- Dethmers J. K., Meister A. Glutathione export by human lymphoid cells: depletion of glutathione by inhibition of its synthesis decreases export and increases sensitivity to irradiation. Proc Natl Acad Sci U S A. 1981 Dec;78(12):7492–7496. doi: 10.1073/pnas.78.12.7492. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Eyer P., Podhradský D. Evaluation of the micromethod for determination of glutathione using enzymatic cycling and Ellman's reagent. Anal Biochem. 1986 Feb 15;153(1):57–66. doi: 10.1016/0003-2697(86)90061-8. [DOI] [PubMed] [Google Scholar]
- Fahey R. C., Newton G. L. Determination of low-molecular-weight thiols using monobromobimane fluorescent labeling and high-performance liquid chromatography. Methods Enzymol. 1987;143:85–96. doi: 10.1016/0076-6879(87)43016-4. [DOI] [PubMed] [Google Scholar]
- Fahey R. C., Prise K. M., Stratford M. R., Watfa R. R., Michael B. D. Rates for repair of pBR 322 DNA radicals by thiols as measured by the gas explosion technique: evidence that counter-ion condensation and co-ion depletion are significant at physiological ionic strength. Int J Radiat Biol. 1991 Apr;59(4):901–917. doi: 10.1080/09553009114550801. [DOI] [PubMed] [Google Scholar]
- Griffith O. W. Determination of glutathione and glutathione disulfide using glutathione reductase and 2-vinylpyridine. Anal Biochem. 1980 Jul 15;106(1):207–212. doi: 10.1016/0003-2697(80)90139-6. [DOI] [PubMed] [Google Scholar]
- Griffith O. W., Meister A. Potent and specific inhibition of glutathione synthesis by buthionine sulfoximine (S-n-butyl homocysteine sulfoximine). J Biol Chem. 1979 Aug 25;254(16):7558–7560. [PubMed] [Google Scholar]
- Held K. D., Epp E. R., Awad S., Biaglow J. E. Postirradiation sensitization of mammalian cells by the thiol-depleting agent dimethyl fumarate. Radiat Res. 1991 Jul;127(1):75–80. [PubMed] [Google Scholar]
- Held K. D., Harrop H. A., Michael B. D. Effects of oxygen and sulphydryl-containing compounds on irradiated transforming DNA. III. Reaction rates. Int J Radiat Biol Relat Stud Phys Chem Med. 1984 Jun;45(6):627–636. doi: 10.1080/09553008414550891. [DOI] [PubMed] [Google Scholar]
- Hodgkiss R. J. Isolation of mammalian cell variants with enhanced endogenous thiol content at low survival levels following irradiation. Int J Radiat Biol. 1990 Jan;57(1):83–95. doi: 10.1080/09553009014550361. [DOI] [PubMed] [Google Scholar]
- Kato T., Irwin R. J., Jr, Prout G. R., Jr Cell cycles in two cell lines of human bladder carcinoma. Tohoku J Exp Med. 1977 Feb;121(2):157–164. doi: 10.1620/tjem.121.157. [DOI] [PubMed] [Google Scholar]
- Kelland L. R., Edwards S. M., Steel G. G. Induction and rejoining of DNA double-strand breaks in human cervix carcinoma cell lines of differing radiosensitivity. Radiat Res. 1988 Dec;116(3):526–538. [PubMed] [Google Scholar]
- Lehnert S., Greene D., Batist G. Radiation response of drug-resistant variants of a human breast cancer cell line: the effect of glutathione depletion. Radiat Res. 1990 Nov;124(2):208–215. [PubMed] [Google Scholar]
- Ljungman M., Nyberg S., Nygren J., Eriksson M., Ahnström G. DNA-bound proteins contribute much more than soluble intracellular compounds to the intrinsic protection against radiation-induced DNA strand breaks in human cells. Radiat Res. 1991 Aug;127(2):171–176. [PubMed] [Google Scholar]
- Loh S. N., Dethlefsen L. A., Newton G. L., Aguilera J. A., Fahey R. C. Nuclear thiols: technical limitations on the determination of endogenous nuclear glutathione and the potential importance of sulfhydryl proteins. Radiat Res. 1990 Jan;121(1):98–106. [PubMed] [Google Scholar]
- Malaise E. P. Reduced oxygen enhancement of the radiosensitivity of glutathione-deficient fibroblasts. Radiat Res. 1983 Sep;95(3):486–494. [PubMed] [Google Scholar]
- Masters J. R., Hepburn P. J., Walker L., Highman W. J., Trejdosiewicz L. K., Povey S., Parkar M., Hill B. T., Riddle P. R., Franks L. M. Tissue culture model of transitional cell carcinoma: characterization of twenty-two human urothelial cell lines. Cancer Res. 1986 Jul;46(7):3630–3636. [PubMed] [Google Scholar]
- Mauro F., Grasso A., Tolmach L. J. Variations in sulfhydryl, disulfide, and protein content during synchronous and asynchronous growth of HeLa cells. Biophys J. 1969 Nov;9(11):1377–1397. doi: 10.1016/S0006-3495(69)86460-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mitchell J. B., Russo A. The role of glutathione in radiation and drug induced cytotoxicity. Br J Cancer Suppl. 1987 Jun;8:96–104. [PMC free article] [PubMed] [Google Scholar]
- Oleinick N. L., Xue L. Y., Friedman L. R., Donahue L. L., Biaglow J. E. Inhibition of radiation-induced DNA-protein cross-link repair by glutathione depletion with L-buthionine sulfoximine. NCI Monogr. 1988;(6):225–229. [PubMed] [Google Scholar]
- Oshino N., Chance B. Properties of glutathione release observed during reduction of organic hydroperoxide, demethylation of aminopyrine and oxidation of some substances in perfused rat liver, and their implications for the physiological function of catalase. Biochem J. 1977 Mar 15;162(3):509–525. doi: 10.1042/bj1620509. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Peacock J. H., Eady J. J., Edwards S. M., McMillan T. J., Steel G. G. The intrinsic alpha/beta ratio for human tumour cells: is it a constant? Int J Radiat Biol. 1992 Apr;61(4):479–487. doi: 10.1080/09553009214551241. [DOI] [PubMed] [Google Scholar]
- Peacock J. H., Eady J. J., Edwards S., Holmes A., McMillan T. J., Steel G. G. Initial damage or repair as the major determinant of cellular radiosensitivity? Int J Radiat Biol. 1989 Nov;56(5):543–547. doi: 10.1080/09553008914551711. [DOI] [PubMed] [Google Scholar]
- Post G. B., Keller D. A., Connor K. A., Menzel D. B. Effects of culture conditions on glutathione content in A549 cells. Biochem Biophys Res Commun. 1983 Jul 29;114(2):737–742. doi: 10.1016/0006-291x(83)90842-2. [DOI] [PubMed] [Google Scholar]
- Rice G. C., Bump E. A., Shrieve D. C., Lee W., Kovacs M. Quantitative analysis of cellular glutathione by flow cytometry utilizing monochlorobimane: some applications to radiation and drug resistance in vitro and in vivo. Cancer Res. 1986 Dec;46(12 Pt 1):6105–6110. [PubMed] [Google Scholar]
- Smith I. E., Courtenay V. D., Mills J., Peckham M. J. In vitro radiation response of cells from four human tumors propagated in immune-suppressed mice. Cancer Res. 1978 Feb;38(2):390–392. [PubMed] [Google Scholar]
- Taylor A. M., Byrd P. J., McConville C. M., Thacker S. Genetic and cellular features of ataxia telangiectasia. Int J Radiat Biol. 1994 Jan;65(1):65–70. doi: 10.1080/09553009414550091. [DOI] [PubMed] [Google Scholar]
- Whitaker S. J., Ung Y. C., McMillan T. J. DNA double-strand break induction and rejoining as determinants of human tumour cell radiosensitivity. A pulsed-field gel electrophoresis study. Int J Radiat Biol. 1995 Jan;67(1):7–18. doi: 10.1080/09553009514550021. [DOI] [PubMed] [Google Scholar]
- van der Schans G. P., Vos O., Roos-Verheij W. S., Lohman P. H. The influence of oxygen on the induction of radiation damage in DNA in mammalian cells after sensitization by intracellular glutathione depletion. Int J Radiat Biol Relat Stud Phys Chem Med. 1986 Sep;50(3):453–470. doi: 10.1080/09553008614550861. [DOI] [PubMed] [Google Scholar]