Abstract
In order to test whether circumvention of clinical resistance can be obtained in common solid tumours by targeting different drug resistance mechanisms, a phase I clinical and immunological study was designed. The purpose of the study was to determine the dose of cyclosporin A (CsA), in combination with doxorubicin (DOX) and ifosfamide (IFX), needed to achieve steady-state whole-blood levels of 2000 ng ml-1 and the associated toxicity of this combination. Treatment consisted of CsA 5 mg kg-1 as a 2 h loading infusion, followed by a CsA 3 day continuous infusion (c.i.) (days 1-3) at doses that were escalated from 10 to 18 mg kg-1 day-1. Chemotherapy consisted of DOX 55 mg m-2 by i.v. 24 h c.i. (day 2) and IFX 2 g m-2 i.v. over 1 h on days 1 and 3. Treatments were repeated every 4 weeks. Eighteen patients with previously treated resistant solid tumours received 39 cycles. Mean steady-state CsA levels > or = 2000 ng ml-1 were reached at 5 mg kg-1 loading dose followed by a 3 day c.i. of 16 mg kg-1 day-1 or greater. Haematological toxicity was greater than expected for the same chemotherapy alone. One patient died of intracranial haemorrhage due to severe thrombopenia. Other observed toxicities were: asymptomatic hyperbilirubinaemia (46% cycles), mild nephrotoxicity (20% cycles), hypomagnesaemia (72% cycles), mild increase in body weight (100% cycles), hypertension (15% cycles) and headache (15% cycles). Overall the toxicity was acceptable and manageable. No alterations in absolute lymphocyte number, the lymphocyte subsets studied (CD3, CD4, CD8, CD19) or CD4/CD8 ratio were observed in patients receiving more than one treatment cycle, although there were significant and non-uniform variations in the values of the different lymphocyte subsets studied when pre- and post-treatment values were compared. There was also a significant increase in the CD4/CD8 ratio. Tumour regressions were observed in two patients (epidermoid carcinoma of the cervix and Ewing's sarcoma). The CsA dose recommended for phase II trials is a 5 mg kg-1 loading dose followed by a 3-day c.i. of 16 mg kg-1 day-1 simultaneously with DOX and IFX at the doses administered in this study.
Full text
PDF





Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Awni W. M. Pharmacodynamic monitoring of cyclosporin. Clin Pharmacokinet. 1992 Dec;23(6):428–448. doi: 10.2165/00003088-199223060-00004. [DOI] [PubMed] [Google Scholar]
- Campos L., Guyotat D., Archimbaud E., Calmard-Oriol P., Tsuruo T., Troncy J., Treille D., Fiere D. Clinical significance of multidrug resistance P-glycoprotein expression on acute nonlymphoblastic leukemia cells at diagnosis. Blood. 1992 Jan 15;79(2):473–476. [PubMed] [Google Scholar]
- Chan H. S., Haddad G., Thorner P. S., DeBoer G., Lin Y. P., Ondrusek N., Yeger H., Ling V. P-glycoprotein expression as a predictor of the outcome of therapy for neuroblastoma. N Engl J Med. 1991 Dec 5;325(23):1608–1614. doi: 10.1056/NEJM199112053252304. [DOI] [PubMed] [Google Scholar]
- Chan H. S., Thorner P. S., Haddad G., Ling V. Immunohistochemical detection of P-glycoprotein: prognostic correlation in soft tissue sarcoma of childhood. J Clin Oncol. 1990 Apr;8(4):689–704. doi: 10.1200/JCO.1990.8.4.689. [DOI] [PubMed] [Google Scholar]
- Chaudhary P. M., Mechetner E. B., Roninson I. B. Expression and activity of the multidrug resistance P-glycoprotein in human peripheral blood lymphocytes. Blood. 1992 Dec 1;80(11):2735–2739. [PubMed] [Google Scholar]
- Drach D., Zhao S., Drach J., Mahadevia R., Gattringer C., Huber H., Andreeff M. Subpopulations of normal peripheral blood and bone marrow cells express a functional multidrug resistant phenotype. Blood. 1992 Dec 1;80(11):2729–2734. [PubMed] [Google Scholar]
- Erlichman C., Moore M., Thiessen J. J., Kerr I. G., Walker S., Goodman P., Bjarnason G., DeAngelis C., Bunting P. Phase I pharmacokinetic study of cyclosporin A combined with doxorubicin. Cancer Res. 1993 Oct 15;53(20):4837–4842. [PubMed] [Google Scholar]
- Favrot M., Janossy G., Tidman N., Blacklock H., Lopez E., Bofill M., Lampert I., Morgenstein G., Powles R., Prentice H. G. T cell regeneration after allogeneic bone marrow transplantation. Clin Exp Immunol. 1983 Oct;54(1):59–72. [PMC free article] [PubMed] [Google Scholar]
- Goldstein L. J., Galski H., Fojo A., Willingham M., Lai S. L., Gazdar A., Pirker R., Green A., Crist W., Brodeur G. M. Expression of a multidrug resistance gene in human cancers. J Natl Cancer Inst. 1989 Jan 18;81(2):116–124. doi: 10.1093/jnci/81.2.116. [DOI] [PubMed] [Google Scholar]
- González-Manzano R., Vieitez J. M., Tangco E., Fernandez de Alava E., Herranz P., Garcia-Foncillas J. Phase II evaluation of doxorubicin, ifosfamide, and dacarbazine plus amphotericin B in the treatment of metastatic soft tissue sarcomas. A pilot study. Am J Clin Oncol. 1993 Aug;16(4):332–337. doi: 10.1097/00000421-199308000-00012. [DOI] [PubMed] [Google Scholar]
- Kahan B. D., Grevel J. Optimization of cyclosporine therapy in renal transplantation by a pharmacokinetic strategy. Transplantation. 1988 Nov;46(5):631–644. doi: 10.1097/00007890-198811000-00002. [DOI] [PubMed] [Google Scholar]
- Kashani-Sabet M., Wang W., Scanlon K. J. Cyclosporin A suppresses cisplatin-induced c-fos gene expression in ovarian carcinoma cells. J Biol Chem. 1990 Jul 5;265(19):11285–11288. [PubMed] [Google Scholar]
- Larsson R., Nygren P. Verapamil and cyclosporin A potentiate the effects of chemotherapeutic drugs in the human medullary thyroid carcinoma TT cell line not expressing the 170 kDa P-glycoprotein. Cancer Lett. 1990 Nov 5;54(3):125–131. doi: 10.1016/0304-3835(90)90033-t. [DOI] [PubMed] [Google Scholar]
- Lee F. Y., Vessey A. R., Siemann D. W. Glutathione as a determinant of cellular response to doxorubicin. NCI Monogr. 1988;(6):211–215. [PubMed] [Google Scholar]
- Linch D. C., Knott L. J., Thomas R. M., Harper P., Goldstone A. H., Davis E. G., Levinski R. J. T cell regeneration after allogeneic and autologous bone marrow transplantation. Br J Haematol. 1983 Mar;53(3):451–458. doi: 10.1111/j.1365-2141.1983.tb02046.x. [DOI] [PubMed] [Google Scholar]
- Lind M. J., McGown A. T., Hadfield J. A., Thatcher N., Crowther D., Fox B. W. The effect of ifosfamide and its metabolites on intracellular glutathione levels in vitro and in vivo. Biochem Pharmacol. 1989 Jun 1;38(11):1835–1840. doi: 10.1016/0006-2952(89)90419-x. [DOI] [PubMed] [Google Scholar]
- List A. F., Spier C., Greer J., Wolff S., Hutter J., Dorr R., Salmon S., Futscher B., Baier M., Dalton W. Phase I/II trial of cyclosporine as a chemotherapy-resistance modifier in acute leukemia. J Clin Oncol. 1993 Sep;11(9):1652–1660. doi: 10.1200/JCO.1993.11.9.1652. [DOI] [PubMed] [Google Scholar]
- Marie J. P., Zittoun R., Sikic B. I. Multidrug resistance (mdr1) gene expression in adult acute leukemias: correlations with treatment outcome and in vitro drug sensitivity. Blood. 1991 Aug 1;78(3):586–592. [PubMed] [Google Scholar]
- Millward M. J., Harris A. L., Cantwell B. M. Phase II study of doxorubicin plus ifosfamide/mesna in patients with advanced breast cancer. Cancer. 1990 Jun 1;65(11):2421–2425. doi: 10.1002/1097-0142(19900601)65:11<2421::aid-cncr2820651103>3.0.co;2-l. [DOI] [PubMed] [Google Scholar]
- Olsen G. A., Gockerman J. P., Bast R. C., Jr, Borowitz M., Peters W. P. Altered immunologic reconstitution after standard-dose chemotherapy or high-dose chemotherapy with autologous bone marrow support. Transplantation. 1988 Jul;46(1):57–60. doi: 10.1097/00007890-198807000-00009. [DOI] [PubMed] [Google Scholar]
- Onsrud M., Bosnes V., Grahm I. cis-Platinum as adjunctive to surgery in early stage ovarian carcinoma: effects on lymphoid cell subpopulations. Gynecol Oncol. 1986 Mar;23(3):323–328. doi: 10.1016/0090-8258(86)90133-2. [DOI] [PubMed] [Google Scholar]
- Pastan I., Gottesman M. M. Multidrug resistance. Annu Rev Med. 1991;42:277–286. doi: 10.1146/annurev.me.42.020191.001425. [DOI] [PubMed] [Google Scholar]
- Pirker R., Wallner J., Geissler K., Linkesch W., Haas O. A., Bettelheim P., Hopfner M., Scherrer R., Valent P., Havelec L. MDR1 gene expression and treatment outcome in acute myeloid leukemia. J Natl Cancer Inst. 1991 May 15;83(10):708–712. doi: 10.1093/jnci/83.10.708. [DOI] [PubMed] [Google Scholar]
- Rodenburg C. J., Nooter K., Herweijer H., Seynaeve C., Oosterom R., Stoter G., Verweij J. Phase II study of combining vinblastine and cyclosporin-A to circumvent multidrug resistance in renal cell cancer. Ann Oncol. 1991 Apr;2(4):305–306. doi: 10.1093/oxfordjournals.annonc.a057941. [DOI] [PubMed] [Google Scholar]
- Sonneveld P., Durie B. G., Lokhorst H. M., Marie J. P., Solbu G., Suciu S., Zittoun R., Löwenberg B., Nooter K. Modulation of multidrug-resistant multiple myeloma by cyclosporin. The Leukaemia Group of the EORTC and the HOVON. Lancet. 1992 Aug 1;340(8814):255–259. doi: 10.1016/0140-6736(92)92353-h. [DOI] [PubMed] [Google Scholar]
- Twentyman P. R., Fox N. E., White D. J. Cyclosporin A and its analogues as modifiers of adriamycin and vincristine resistance in a multi-drug resistant human lung cancer cell line. Br J Cancer. 1987 Jul;56(1):55–57. doi: 10.1038/bjc.1987.153. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Verweij J., Herweijer H., Oosterom R., van der Burg M. E., Planting A. S., Seynaeve C., Stoter G., Nooter K. A phase II study of epidoxorubicin in colorectal cancer and the use of cyclosporin-A in an attempt to reverse multidrug resistance. Br J Cancer. 1991 Aug;64(2):361–364. doi: 10.1038/bjc.1991.307. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yahanda A. M., Alder K. M., Fisher G. A., Brophy N. A., Halsey J., Hardy R. I., Gosland M. P., Lum B. L., Sikic B. I. Phase I trial of etoposide with cyclosporine as a modulator of multidrug resistance. J Clin Oncol. 1992 Oct;10(10):1624–1634. doi: 10.1200/JCO.1992.10.10.1624. [DOI] [PubMed] [Google Scholar]
- Yee G. C., Lennon T. P., Gmur D. J., Kennedy M. S., Deeg H. J. Age-dependent cyclosporine: pharmacokinetics in marrow transplant recipients. Clin Pharmacol Ther. 1986 Oct;40(4):438–443. doi: 10.1038/clpt.1986.204. [DOI] [PubMed] [Google Scholar]
