Skip to main content
British Journal of Cancer logoLink to British Journal of Cancer
. 1995 Nov;72(5):1120–1124. doi: 10.1038/bjc.1995.474

The mechanisms by which hyperbaric oxygen and carbogen improve tumour oxygenation.

D M Brizel 1, S Lin 1, J L Johnson 1, J Brooks 1, M W Dewhirst 1, C A Piantadosi 1
PMCID: PMC2033965  PMID: 7577456

Abstract

Hyperbaric oxygen (HBO) has been proposed to reduce tumour hypoxia by increasing the amount of dissolved oxygen in the plasma. That this actually occurs has not been verified experimentally. This study was performed to explore changes in tumour oxygenation induced by treatment with normobaric and hyperbaric oxygen and carbogen. R3230Ac mammary adenocarcinomas were implanted into Fisher 344 rats. Arterial blood gases, blood pressure and heart rate were monitored. Tumour oxygenation was measured polarographically in five sets of animals. They received either normobaric 100% oxygen, hyperbaric (3 atmospheres; atm) 100% oxygen, normobaric carbogen or hyperbaric (3 atm) carbogen (HBC) +/- bretylium. HBO reduced the mean level of low pO2 values (< 5 mmHg) from 0.49 to 0.07 (P = 0.0003) and increased the average median pO2 from 8 mmHg to 55 mmHg (P = 0.001). HBC reduced the level of low pO2 values from 0.82 to 0.51 (P = 0.002) an increased median pO2 from 2 mmHg to 6 mmHg (P = 0.05). Normobaric oxygen and carbogen did not change tumour oxygenation significantly. Sympathetic blockade with bretylium before HBC exposure improved oxygenation significantly more than HBC alone (low pO2 0.55-0.17, median pO2 4-17 mmHg). HBO and hyperbaric carbogen improved tumour oxygenation in this model, while normobaric oxygen or carbogen had no effect. Sympathetic-mediated vasoconstriction during hyperbaric carbogen caused it to be less effective than HBO. This mechanism also appeared to operate during normobaric carbogen breathing.

Full text

PDF
1120

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Brady L. W., Plenk H. P., Hanley J. A., Glassburn J. R., Kramer S., Parker R. G. Hyperbaric oxygen therapy for carcinoma of the cervix--stages IIB, IIIA, IIIB and IVA: results of a randomized study by the Radiation Therapy Oncology Group. Int J Radiat Oncol Biol Phys. 1981 Aug;7(8):991–998. doi: 10.1016/0360-3016(81)90149-8. [DOI] [PubMed] [Google Scholar]
  2. Chaplin D. J., Horsman M. R., Siemann D. W. Further evaluation of nicotinamide and carbogen as a strategy to reoxygenate hypoxic cells in vivo: importance of nicotinamide dose and pre-irradiation breathing time. Br J Cancer. 1993 Aug;68(2):269–273. doi: 10.1038/bjc.1993.326. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Dische S. What have we learnt from hyperbaric oxygen? Radiother Oncol. 1991;20 (Suppl 1):71–74. doi: 10.1016/0167-8140(91)90191-i. [DOI] [PubMed] [Google Scholar]
  4. Falk S. J., Ward R., Bleehen N. M. The influence of carbogen breathing on tumour tissue oxygenation in man evaluated by computerised p02 histography. Br J Cancer. 1992 Nov;66(5):919–924. doi: 10.1038/bjc.1992.386. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Grau C., Horsman M. R., Overgaard J. Improving the radiation response in a C3H mouse mammary carcinoma by normobaric oxygen or carbogen breathing. Int J Radiat Oncol Biol Phys. 1992;22(3):415–419. doi: 10.1016/0360-3016(92)90844-8. [DOI] [PubMed] [Google Scholar]
  6. Hampson N. B., Jöbsis-VanderVliet F. F., Piantadosi C. A. Skeletal muscle oxygen availability during respiratory acid-base disturbances in cats. Respir Physiol. 1987 Nov;70(2):143–158. doi: 10.1016/0034-5687(87)90046-6. [DOI] [PubMed] [Google Scholar]
  7. Horsman M. R., Nordsmark M., Khalil A. A., Hill S. A., Chaplin D. J., Siemann D. W., Overgaard J. Reducing acute and chronic hypoxia in tumours by combining nicotinamide with carbogen breathing. Acta Oncol. 1994;33(4):371–376. doi: 10.3109/02841869409098431. [DOI] [PubMed] [Google Scholar]
  8. Inch W. R., McCredie J. A., Sutherland R. M. Effect of duration of breathing 95 percent oxygen plus 5 percent carbon dioxide before x-irradiation on cure of C3H mammary tumor. Cancer. 1970 Apr;25(4):926–931. doi: 10.1002/1097-0142(197004)25:4<926::aid-cncr2820250428>3.0.co;2-c. [DOI] [PubMed] [Google Scholar]
  9. JAMIESON D., VAN DEN BRENK H. A. Comparison of oxygen tensions in normal tissues and Yoshida sarcoma of the rat breathing air or oxygen at 4 atmospheres. Br J Cancer. 1963 Mar;17:70–78. doi: 10.1038/bjc.1963.11. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. JAMIESON D., VANDENBRENK H. A. OXYGEN TENSION IN HUMAN MALIGNANT DISEASE UNDER HYPERBARIC CONDITIONS. Br J Cancer. 1965 Mar;19:139–150. doi: 10.1038/bjc.1965.16. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Kruuv J., Inch W. R., McCredie J. A. Effects of breathing gases containing oxygen and carbon dioxide at 1 and 3 atmospheres pressure on blood flow and oxygenation of tumors. Can J Physiol Pharmacol. 1967 Jan;45(1):49–56. doi: 10.1139/y67-005. [DOI] [PubMed] [Google Scholar]
  12. Lustig R., Lowe N., Prosnitz L., Spaulding M., Cohen M., Stitt J., Brannon R. Fluosol and oxygen breathing as an adjuvant to radiation therapy in the treatment of locally advanced non-small cell carcinoma of the lung: results of a phase I/II study. Int J Radiat Oncol Biol Phys. 1990 Jul;19(1):97–102. doi: 10.1016/0360-3016(90)90140-f. [DOI] [PubMed] [Google Scholar]
  13. Lustig R., McIntosh-Lowe N., Rose C., Haas J., Krasnow S., Spaulding M., Prosnitz L. Phase I/II study of Fluosol-DA and 100% oxygen as an adjuvant to radiation in the treatment of advanced squamous cell tumors of the head and neck. Int J Radiat Oncol Biol Phys. 1989 Jun;16(6):1587–1593. doi: 10.1016/0360-3016(89)90967-x. [DOI] [PubMed] [Google Scholar]
  14. Martin L., Lartigau E., Weeger P., Lambin P., Le Ridant A. M., Lusinchi A., Wibault P., Eschwege F., Luboinski B., Guichard M. Changes in the oxygenation of head and neck tumors during carbogen breathing. Radiother Oncol. 1993 May;27(2):123–130. doi: 10.1016/0167-8140(93)90132-r. [DOI] [PubMed] [Google Scholar]
  15. RICHARDSON D. W., WASSERMAN A. J., PATTERSON J. L., Jr General and regional circulatory responses to change in blood pH and carbon dioxide tension. J Clin Invest. 1961 Jan;40:31–43. doi: 10.1172/JCI104234. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Rockwell S., Kelley M., Irvin C. G., Hughes C. S., Porter E., Yabuki H., Fischer J. J. Modulation of tumor oxygenation and radiosensitivity by a perfluorooctylbromide emulsion. Radiother Oncol. 1991 Oct;22(2):92–98. doi: 10.1016/0167-8140(91)90003-y. [DOI] [PubMed] [Google Scholar]
  17. Rockwell S. Use of hypoxia-directed drugs in the therapy of solid tumors. Semin Oncol. 1992 Aug;19(4 Suppl 11):29–40. [PubMed] [Google Scholar]
  18. Rojas A. Radiosensitization with normobaric oxygen and carbogen. Radiother Oncol. 1991;20 (Suppl 1):65–70. doi: 10.1016/0167-8140(91)90190-r. [DOI] [PubMed] [Google Scholar]
  19. Secomb T. W., Hsu R., Ong E. T., Gross J. F., Dewhirst M. W. Analysis of the effects of oxygen supply and demand on hypoxic fraction in tumors. Acta Oncol. 1995;34(3):313–316. doi: 10.3109/02841869509093981. [DOI] [PubMed] [Google Scholar]
  20. Siemann D. W., Horsman M. R., Chaplin D. J. The radiation response of KHT sarcomas following nicotinamide treatment and carbogen breathing. Radiother Oncol. 1994 May;31(2):117–122. doi: 10.1016/0167-8140(94)90391-3. [DOI] [PubMed] [Google Scholar]
  21. Smith T. L., Osborne S. W., Hutchins P. M. Long-term micro- and macrocirculatory measurements in conscious rats. Microvasc Res. 1985 May;29(3):360–370. doi: 10.1016/0026-2862(85)90025-1. [DOI] [PubMed] [Google Scholar]
  22. THOMLINSON R. H., GRAY L. H. The histological structure of some human lung cancers and the possible implications for radiotherapy. Br J Cancer. 1955 Dec;9(4):539–549. doi: 10.1038/bjc.1955.55. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from British Journal of Cancer are provided here courtesy of Cancer Research UK

RESOURCES