Abstract
The cytoxicity of both intercalating (m-AMSA) and non-intercalating (VP16, VM26) topoisomerase II-targeting drugs is thought to occur via trapping DNA topoisomerase II on DNA in the form of cleavable complexes. First, analysis of cleavable complexes (detected as DNA double-strand breaks) by pulsed-field gel electrophoresis confirmed the correlation between cleavable complex formation and cytotoxicity of three topoisomerase-targeting drugs in HeLa S3 cells (the order of effects being VM26 > m-AMSA > VP16). In contrast to many antineoplastic agents, hyperthermic treatments were found to protect cells against the toxicity of all three topoisomerase II drugs. Hyperthermia treatment does not alter drug accumulation but reduces the ability of the drug-topoisomerase II complex to form the cleavable complexes. Nuclear protein aggregation induced by heat at the sites of topoisomerase II-DNA interaction may explain such an effect. In thermotolerant cells, the toxic effects of VP16 but not m-AMSA were reduced. For both drugs, however, the status of thermotolerance did not affect cleavable complex formation by the drugs. Thus, protection against VP-16 toxicity seems not to be associated with heat-induced activation of the P-gp 170 pump or altered topoisomerase II-DNA interactions. Rather, a protective (heat shock protein mediated?) mechanism against non-intercalating topoisomerase II drugs seems to occur at a stage after DNA-drug interaction. Finally, heat treatment before topoisomerase II drug treatment reduced toxicity and cleavable complex formation in thermotolerant cells to about the same extent as in non-tolerant cells, consistent with the presumption of nuclear protein aggregation being responsible for this effect.
Full text
PDF





Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bakic M., Beran M., Andersson B. S., Silberman L., Estey E., Zwelling L. A. The production of topoisomerase II-mediated DNA cleavage in human leukemia cells predicts their susceptibility to 4'-(9-acridinylamino)methanesulfon-m-anisidide (m-AMSA). Biochem Biophys Res Commun. 1986 Jan 29;134(2):638–645. doi: 10.1016/s0006-291x(86)80467-3. [DOI] [PubMed] [Google Scholar]
- Blöcher D., Einspenner M., Zajackowski J. CHEF electrophoresis, a sensitive technique for the determination of DNA double-strand breaks. Int J Radiat Biol. 1989 Oct;56(4):437–448. doi: 10.1080/09553008914551591. [DOI] [PubMed] [Google Scholar]
- Blöcher D., Kunhi M. DNA double-strand break analysis by CHEF (clamped homogeneous electrical field) electrophoresis. Int J Radiat Biol. 1990 Jul;58(1):23–34. doi: 10.1080/09553009014551411. [DOI] [PubMed] [Google Scholar]
- Carmichael J., DeGraff W. G., Gazdar A. F., Minna J. D., Mitchell J. B. Evaluation of a tetrazolium-based semiautomated colorimetric assay: assessment of chemosensitivity testing. Cancer Res. 1987 Feb 15;47(4):936–942. [PubMed] [Google Scholar]
- Ciocca D. R., Fuqua S. A., Lock-Lim S., Toft D. O., Welch W. J., McGuire W. L. Response of human breast cancer cells to heat shock and chemotherapeutic drugs. Cancer Res. 1992 Jul 1;52(13):3648–3654. [PubMed] [Google Scholar]
- Cockerill P. N., Garrard W. T. Chromosomal loop anchorage of the kappa immunoglobulin gene occurs next to the enhancer in a region containing topoisomerase II sites. Cell. 1986 Jan 31;44(2):273–282. doi: 10.1016/0092-8674(86)90761-0. [DOI] [PubMed] [Google Scholar]
- Covey J. M., Kohn K. W., Kerrigan D., Tilchen E. J., Pommier Y. Topoisomerase II-mediated DNA damage produced by 4'-(9-acridinylamino)methanesulfon-m-anisidide and related acridines in L1210 cells and isolated nuclei: relation to cytotoxicity. Cancer Res. 1988 Feb 15;48(4):860–865. [PubMed] [Google Scholar]
- Darby M. K., Herrera R. E., Vosberg H. P., Nordheim A. DNA topoisomerase II cleaves at specific sites in the 5' flanking region of c-fos proto-oncogenes in vitro. EMBO J. 1986 Sep;5(9):2257–2265. doi: 10.1002/j.1460-2075.1986.tb04493.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gasser S. M., Laemmli U. K. The organisation of chromatin loops: characterization of a scaffold attachment site. EMBO J. 1986 Mar;5(3):511–518. doi: 10.1002/j.1460-2075.1986.tb04240.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Glisson B., Gupta R., Smallwood-Kentro S., Ross W. Characterization of acquired epipodophyllotoxin resistance in a Chinese hamster ovary cell line: loss of drug-stimulated DNA cleavage activity. Cancer Res. 1986 Apr;46(4 Pt 2):1934–1938. [PubMed] [Google Scholar]
- Huot J., Roy G., Lambert H., Chrétien P., Landry J. Increased survival after treatments with anticancer agents of Chinese hamster cells expressing the human Mr 27,000 heat shock protein. Cancer Res. 1991 Oct 1;51(19):5245–5252. [PubMed] [Google Scholar]
- Jorritsma J. B., Konings A. W. Inhibition of repair of radiation-induced strand breaks by hyperthermia, and its relationship to cell survival after hyperthermia alone. Int J Radiat Biol Relat Stud Phys Chem Med. 1983 May;43(5):505–516. doi: 10.1080/09553008314550601. [DOI] [PubMed] [Google Scholar]
- Kampinga H. H., Luppes J. G., Konings A. W. Heat-induced nuclear protein binding and its relation to thermal cytotoxicity. Int J Hyperthermia. 1987 Sep-Oct;3(5):459–465. doi: 10.3109/02656738709140416. [DOI] [PubMed] [Google Scholar]
- Kampinga H. H. Thermotolerance in mammalian cells. Protein denaturation and aggregation, and stress proteins. J Cell Sci. 1993 Jan;104(Pt 1):11–17. doi: 10.1242/jcs.104.1.11. [DOI] [PubMed] [Google Scholar]
- Kampinga H. H., Turkel-Uygur N., Roti Roti J. L., Konings A. W. The relationship of increased nuclear protein content induced by hyperthermia to killing of HeLa S3 cells. Radiat Res. 1989 Mar;117(3):511–522. [PubMed] [Google Scholar]
- Kampinga H. H., Wright W. D., Konings A. W., Roti Roti J. L. The interaction of heat and radiation affecting the ability of nuclear DNA to undergo supercoiling changes. Radiat Res. 1988 Oct;116(1):114–123. [PubMed] [Google Scholar]
- Kampinga H. H., van den Kruk G., Konings A. W. Reduced DNA break formation and cytotoxicity of the topoisomerase II drug 4'-(9'-acridinylamino)methanesulfon-m-anisidide when combined with hyperthermia in human and rodent cell lines. Cancer Res. 1989 Apr 1;49(7):1712–1717. [PubMed] [Google Scholar]
- Landry J., Lambert H., Zhou M., Lavoie J. N., Hickey E., Weber L. A., Anderson C. W. Human HSP27 is phosphorylated at serines 78 and 82 by heat shock and mitogen-activated kinases that recognize the same amino acid motif as S6 kinase II. J Biol Chem. 1992 Jan 15;267(2):794–803. [PubMed] [Google Scholar]
- Laszlo A. The effects of hyperthermia on mammalian cell structure and function. Cell Prolif. 1992 Mar;25(2):59–87. doi: 10.1111/j.1365-2184.1992.tb01482.x. [DOI] [PubMed] [Google Scholar]
- Li G. C. Heat shock proteins: role in thermotolerance, drug resistance, and relationship to DNA topoisomerases. NCI Monogr. 1987;(4):99–103. [PubMed] [Google Scholar]
- Mirkovitch J., Mirault M. E., Laemmli U. K. Organization of the higher-order chromatin loop: specific DNA attachment sites on nuclear scaffold. Cell. 1984 Nov;39(1):223–232. doi: 10.1016/0092-8674(84)90208-3. [DOI] [PubMed] [Google Scholar]
- Mizuno S., Amagai M., Ishida A. Synergistic cell killing by antitumor agents and hyperthermia in cultured cells. Gan. 1980 Aug;71(4):471–478. [PubMed] [Google Scholar]
- Oesterreich S., Weng C. N., Qiu M., Hilsenbeck S. G., Osborne C. K., Fuqua S. A. The small heat shock protein hsp27 is correlated with growth and drug resistance in human breast cancer cell lines. Cancer Res. 1993 Oct 1;53(19):4443–4448. [PubMed] [Google Scholar]
- Pommier Y., Capranico G., Orr A., Kohn K. W. Distribution of topoisomerase II cleavage sites in simian virus 40 DNA and the effects of drugs. J Mol Biol. 1991 Dec 20;222(4):909–924. doi: 10.1016/0022-2836(91)90585-t. [DOI] [PubMed] [Google Scholar]
- Rice G. C., Hahn G. M. Modulation of adriamycin transport by hyperthermia as measured by fluorescence-activated cell sorting. Cancer Chemother Pharmacol. 1987;20(3):183–187. doi: 10.1007/BF00570481. [DOI] [PubMed] [Google Scholar]
- Riou J. F., Gabillot M., Philippe M., Schrevel J., Riou G. Purification and characterization of Plasmodium berghei DNA topoisomerases I and II: drug action, inhibition of decatenation and relaxation, and stimulation of DNA cleavage. Biochemistry. 1986 Apr 8;25(7):1471–1479. doi: 10.1021/bi00355a001. [DOI] [PubMed] [Google Scholar]
- Rosemann M., Kanon B., Konings A. W., Kampinga H. H. An image analysis technique for detection of radiation-induced DNA fragmentation after CHEF electrophoresis. Int J Radiat Biol. 1993 Aug;64(2):245–249. doi: 10.1080/09553009314551361. [DOI] [PubMed] [Google Scholar]
- Rowe T. C., Chen G. L., Hsiang Y. H., Liu L. F. DNA damage by antitumor acridines mediated by mammalian DNA topoisomerase II. Cancer Res. 1986 Apr;46(4 Pt 2):2021–2026. [PubMed] [Google Scholar]
- Spector N. L., Samson W., Ryan C., Gribben J., Urba W., Welch W. J., Nadler L. M. Growth arrest of human B lymphocytes is accompanied by induction of the low molecular weight mammalian heat shock protein (Hsp28). J Immunol. 1992 Mar 15;148(6):1668–1673. [PubMed] [Google Scholar]
- Udvardy A., Schedl P., Sander M., Hsieh T. S. Topoisomerase II cleavage in chromatin. J Mol Biol. 1986 Sep 20;191(2):231–246. doi: 10.1016/0022-2836(86)90260-3. [DOI] [PubMed] [Google Scholar]
- Warters R. L., Barrows L. R. Heat sensitivity of HeLa S3 cell DNA topoisomerase II. J Cell Physiol. 1994 Jun;159(3):468–474. doi: 10.1002/jcp.1041590311. [DOI] [PubMed] [Google Scholar]
- Warters R. L., Brizgys L. M., Sharma R., Roti Roti J. L. Heat shock (45 degrees C) results in an increase of nuclear matrix protein mass in HeLa cells. Int J Radiat Biol Relat Stud Phys Chem Med. 1986 Aug;50(2):253–268. doi: 10.1080/09553008614550641. [DOI] [PubMed] [Google Scholar]
