Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1986 Jul;52(1):92–97. doi: 10.1128/aem.52.1.92-97.1986

Pentachlorophenol degradation: a pure bacterial culture and an epilithic microbial consortium.

E J Brown, J J Pignatello, M M Martinson, R L Crawford
PMCID: PMC203399  PMID: 3729408

Abstract

The steady-state growth of a Flavobacterium strain known to utilize pentachlorophenol (PCP) was examined when cellobiose and PCP simultaneously limited its growth rate in continuous culture. A concentration of 600 mg of PCP per liter in influent medium could be continuously degraded without affecting steady-state growth. We measured specific rates of PCP carbon degradation as high as 0.15 +/- 0.01 g (dry weight) of C per h at a growth rate of 0.045 h-1. Comparable specific rates of PCP degradation were obtained and maintained by PCP-adapted, natural consortia of epilithic microorganisms. The consortium results suggest that a fixed-film bioreactor containing a PCP-adapted natural microbial population could be used to treat PCP-contaminated water.

Full text

PDF
92

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Braddock J. F., Luong H. V., Brown E. J. Growth Kinetics of Thiobacillus ferrooxidans Isolated from Arsenic Mine Drainage. Appl Environ Microbiol. 1984 Jul;48(1):48–55. doi: 10.1128/aem.48.1.48-55.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. COCHRAN W. G. Estimation of bacterial densities by means of the "most probable number". Biometrics. 1950 Jun;6(2):105–116. [PubMed] [Google Scholar]
  3. Hobbie J. E., Daley R. J., Jasper S. Use of nuclepore filters for counting bacteria by fluorescence microscopy. Appl Environ Microbiol. 1977 May;33(5):1225–1228. doi: 10.1128/aem.33.5.1225-1228.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Klecka G. M., Maier W. J. Kinetics of microbial growth on pentachlorophenol. Appl Environ Microbiol. 1985 Jan;49(1):46–53. doi: 10.1128/aem.49.1.46-53.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Lehmicke L. G., Williams R. T., Crawford R. L. 14C-most-probable-number method for enumeration of active heterotrophic microorganisms in natural waters. Appl Environ Microbiol. 1979 Oct;38(4):644–649. doi: 10.1128/aem.38.4.644-649.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Pignatello J. J., Johnson L. K., Martinson M. M., Carlson R. E., Crawford R. L. Response of the microflora in outdoor experimental streams to pentachlorophenol: compartmental contributions. Appl Environ Microbiol. 1985 Jul;50(1):127–132. doi: 10.1128/aem.50.1.127-132.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Pignatello J. J., Johnson L. K., Martinson M. M., Carlson R. E., Crawford R. L. Response of the microflora in outdoor experimental streams to pentachlorophenol: environmental factors. Can J Microbiol. 1986 Jan;32(1):38–46. doi: 10.1139/m86-008. [DOI] [PubMed] [Google Scholar]
  8. Pignatello J. J., Martinson M. M., Steiert J. G., Carlson R. E., Crawford R. L. Biodegradation and photolysis of pentachlorophenol in artificial freshwater streams. Appl Environ Microbiol. 1983 Nov;46(5):1024–1031. doi: 10.1128/aem.46.5.1024-1031.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Saber D. L., Crawford R. L. Isolation and characterization of Flavobacterium strains that degrade pentachlorophenol. Appl Environ Microbiol. 1985 Dec;50(6):1512–1518. doi: 10.1128/aem.50.6.1512-1518.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Stanlake G. J., Finn R. K. Isolation and characterization of a pentachlorophenol-degrading bacterium. Appl Environ Microbiol. 1982 Dec;44(6):1421–1427. doi: 10.1128/aem.44.6.1421-1427.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES