Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1986 Jul;52(1):98–100. doi: 10.1128/aem.52.1.98-100.1986

Demethylation of Veratrole by Cytochrome P-450 in Streptomyces setonii

John B Sutherland 1
PMCID: PMC203400  PMID: 16347120

Abstract

The actinomycete Streptomyces setonii 75Vi2 demethylates vanillic acid and guaiacol to protocatechuic acid and catechol, respectively, and then metabolizes the products by the β-ketoadipate pathway. UV spectroscopy showed that this strain could also metabolize veratrole (1,2-dimethoxybenzene). When grown in veratrole-containing media supplemented with 2,2′-dipyridyl to inhibit cleavage of the aromatic ring, S. setonii accumulated catechol, which was detected by both liquid chromatography and gas chromatography. Reduced cell extracts from veratrole-grown cultures, but not sodium succinate-grown cultures, produced a carbon monoxide difference spectrum with a peak at 450 nm that indicated the presence of soluble cytochrome P-450. Addition of veratrole or guaiacol to oxidized cell extracts from veratrole-grown cultures produced difference spectra that indicated that these compounds were substrates for cytochrome P-450. My results suggest that S. setonii produces a cytochrome P-450 that is involved in the demethylation of veratrole and guaiacol to catechol, which is then catabolized by the β-ketoadipate pathway.

Full text

PDF
98

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BELLET P., PENASSE L. [On a monodemethylacontine]. Ann Pharm Fr. 1960 May;18:337–338. [PubMed] [Google Scholar]
  2. Bernhardt F. H., Pachowsky H., Staudinger H. A 4-methoxybenzoate O-demethylase from Pseudomonas putida. A new type of monooxygenase system. Eur J Biochem. 1975 Sep 1;57(1):241–256. doi: 10.1111/j.1432-1033.1975.tb02296.x. [DOI] [PubMed] [Google Scholar]
  3. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
  4. Broadbent D. A., Cartwright N. J. Bacterial attack on phenolic ethers. Resolution of a Nocardia O-demethylase and purification of a cytochrome P 450 component. Microbios. 1971 Jul;4(13):7–12. [PubMed] [Google Scholar]
  5. Cardini G., Jurtshuk P. Cytochrome P-450 involvement in the oxidation of n-octane b cell-free extracts of Corynebacterium sp. strain 7E1C. J Biol Chem. 1968 Nov 25;243(22):6070–6072. [PubMed] [Google Scholar]
  6. Cardini G., Jurtshuk P. The enzymatic hydroxylation of n-octane by Corynebacterium sp. strain 7E1C. J Biol Chem. 1970 Jun 10;245(11):2789–2796. [PubMed] [Google Scholar]
  7. Corcoran J. W., Vygantas A. M. Accumulation of 6-deoxyerythronolide B in a normal strain of Streptomyces erythreus and hydroxylation at carbon 6 of the erythranolide ring system by a soluble noninduced cell-free enzyme system. Biochemistry. 1982 Jan 19;21(2):263–269. doi: 10.1021/bi00531a010. [DOI] [PubMed] [Google Scholar]
  8. Crawford R. L. Degradation of homogentisate by strains of Bacillus and Moraxella. Can J Microbiol. 1976 Feb;22(2):276–280. doi: 10.1139/m76-037. [DOI] [PubMed] [Google Scholar]
  9. Dardas A., Gal D., Barrelle M., Sauret-Ignazi G., Sterjiades R., Pelmont J. The demethylation of guaiacol by a new bacterial cytochrome P-450. Arch Biochem Biophys. 1985 Feb 1;236(2):585–592. doi: 10.1016/0003-9861(85)90662-9. [DOI] [PubMed] [Google Scholar]
  10. Davis P. J., Wiese D., Rosazza J. P. Microbial transformations of glaucine. J Chem Soc Perkin 1. 1977;1:1–6. doi: 10.1039/p19770000001. [DOI] [PubMed] [Google Scholar]
  11. Jefcoate C. R. Measurement of substrate and inhibitor binding to microsomal cytochrome P-450 by optical-difference spectroscopy. Methods Enzymol. 1978;52:258–279. doi: 10.1016/s0076-6879(78)52029-6. [DOI] [PubMed] [Google Scholar]
  12. Kersten P. J., Tien M., Kalyanaraman B., Kirk T. K. The ligninase of Phanerochaete chrysosporium generates cation radicals from methoxybenzenes. J Biol Chem. 1985 Mar 10;260(5):2609–2612. [PubMed] [Google Scholar]
  13. PRIDHAM T. G., LYONS A. J., Jr Streptomyces albus (Rossi-Doria) Waksman et Henrici: taxonomic study of strains labeled Streptomyces albus. J Bacteriol. 1961 Mar;81:431–441. doi: 10.1002/path.1700810216. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Peterson J. A., Ullrich V., Hildebrandt A. G. Methyrapone interaction with Pseudomonas putida cytochrome P-405. Arch Biochem Biophys. 1971 Aug;145(2):531–542. doi: 10.1016/s0003-9861(71)80013-9. [DOI] [PubMed] [Google Scholar]
  15. Pometto A. L., 3rd, Crawford D. L. L-Phenylalanine and L-tyrosine catabolism by selected Streptomyces species. Appl Environ Microbiol. 1985 Mar;49(3):727–729. doi: 10.1128/aem.49.3.727-729.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Pometto A. L., 3rd, Sutherland J. B., Crawford D. L. Streptomyces setonii: catabolism of vanillic acid via guaiacol and catechol. Can J Microbiol. 1981 Jun;27(6):636–638. doi: 10.1139/m81-097. [DOI] [PubMed] [Google Scholar]
  17. Ribbons D. W. Requirement of two protein fractions for O-demethylase activity in Pseudomonas testosteroni. FEBS Lett. 1971 Jan 12;12(3):161–165. doi: 10.1016/0014-5793(71)80058-3. [DOI] [PubMed] [Google Scholar]
  18. Rosazza J. P., Kammer M., Youel L. Microbial models of mammalian metabolism O-demethylations of papaverine. Xenobiotica. 1977 Mar;7(3):133–143. doi: 10.3109/00498257709036245. [DOI] [PubMed] [Google Scholar]
  19. Rosazza J. P., Stocklinski A. W., Gustafson M. A., Adrian J., Smith R. V. Microbial models of mammalian metabolism. O-Dealkylation of 10,11-dimethoxyaporphine. J Med Chem. 1975 Aug;18(8):791–794. doi: 10.1021/jm00242a006. [DOI] [PubMed] [Google Scholar]
  20. Rosenthal J. W. Decrease in glucose oxidation in isolated brown fat cells from rats due to tropolone and dimethoxybenzene. Gen Pharmacol. 1981;12(1):47–50. doi: 10.1016/0306-3623(81)90027-6. [DOI] [PubMed] [Google Scholar]
  21. Smith R. V., Rosazza J. P. Microbial models of mammalian metabolism. Aromatic hydroxylation. Arch Biochem Biophys. 1974 Apr 2;161(2):551–558. doi: 10.1016/0003-9861(74)90338-5. [DOI] [PubMed] [Google Scholar]
  22. Stevenson P. M., Ruettinger R. T., Fulco A. J. Cytochrome P-450 revealed: the effect of the respiratory cytochromes on the spectrum of bacterial cytochrome P-450. Biochem Biophys Res Commun. 1983 May 16;112(3):927–934. doi: 10.1016/0006-291x(83)91706-0. [DOI] [PubMed] [Google Scholar]
  23. Sutherland J. B., Crawford D. L., Pometto A. L., 3rd Metabolism of cinnamic, p-coumaric, and ferulic acids by Streptomyces setonii. Can J Microbiol. 1983 Oct;29(10):1253–1257. doi: 10.1139/m83-195. [DOI] [PubMed] [Google Scholar]
  24. Sutherland J. B., Crawford D. L., Pometto A. L. Catabolism of substituted benzoic acids by streptomyces species. Appl Environ Microbiol. 1981 Feb;41(2):442–448. doi: 10.1128/aem.41.2.442-448.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES