Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1986 Aug;52(2):334–339. doi: 10.1128/aem.52.2.334-339.1986

Influence of para-substituents on the oxidative metabolism of o-nitrophenols by Pseudomonas putida B2.

J Zeyer, H P Kocher, K N Timmis
PMCID: PMC203526  PMID: 3752997

Abstract

Pseudomonas putida B2 is able to grow on o-nitrophenol (ONP) as the sole source of carbon and nitrogen. ONP was converted by a nitrophenol oxygenase to nitrite and catechol. Catechol was then attacked by a catechol 1,2-dioxygenase and further degraded through an ortho-cleavage pathway. ONP derivatives which were para-substituted with a methyl-, chloro-, carboxy-, formyl- or nitro-group failed to support growth of strain B2. Relevant catabolic enzymes were characterized to analyze why these derivatives were not mineralized. Nitrophenol oxygenase of strain B2 is a soluble, NADPH-dependent enzyme that is stimulated by magnesium, manganese, and calcium ions. It is active toward ONP, 4-methyl-, 4-chloro-, and to a lesser extent, 4-formyl-ONP but not toward 4-carboxy- or 4-nitro-ONP. In addition, 4-formyl-, 4-carboxy-, and 4-nitro-ONP failed to induce the formation of nitrophenol oxygenase. Catechol 1,2-dioxygenase of strain B2 is active toward catechol and 4-methyl-catechol but only poorly active toward chlorinated catechols. 4-Methyl-catechol is likely to be degraded to methyl-lactones, which are often dead-end metabolites in bacteria. Thus, of the compounds tested, only unsubstituted ONP acts as an inducer and substrate for all of the enzymes of a productive catabolic pathway.

Full text

PDF
334

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Braun K., Gibson D. T. Anaerobic degradation of 2-aminobenzoate (anthranilic acid) by denitrifying bacteria. Appl Environ Microbiol. 1984 Jul;48(1):102–107. doi: 10.1128/aem.48.1.102-107.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. CARTWRIGHT N. J., CAIN R. B. Bacterial degradation of the nitrobenzoic acids. Biochem J. 1959 Feb;71(2):248–261. doi: 10.1042/bj0710248. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Corbett M. D., Corbett B. R. Metabolism of 4-Chloronitrobenzene by the Yeast Rhodosporidium sp. Appl Environ Microbiol. 1981 Apr;41(4):942–949. doi: 10.1128/aem.41.4.942-949.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Dorn E., Knackmuss H. J. Chemical structure and biodegradability of halogenated aromatic compounds. Substituent effects on 1,2-dioxygenation of catechol. Biochem J. 1978 Jul 15;174(1):85–94. doi: 10.1042/bj1740085. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. GERMANIER R., WUHRMANN K. UBER DEN AEROBEN MIKROBIELLEN ABBAU AROMATISCHER NITROVERBINDUNGEN. Pathol Microbiol (Basel) 1963;26:569–578. [PubMed] [Google Scholar]
  6. Hallas L. E., Alexander M. Microbial transformation of nitroaromatic compounds in sewage effluent. Appl Environ Microbiol. 1983 Apr;45(4):1234–1241. doi: 10.1128/aem.45.4.1234-1241.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Hegeman G. D. Synthesis of the enzymes of the mandelate pathway by Pseudomonas putida. I. Synthesis of enzymes by the wild type. J Bacteriol. 1966 Mar;91(3):1140–1154. doi: 10.1128/jb.91.3.1140-1154.1966. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Kido T., Hashizume K., Soda K. Purification and properties of nitroalkane oxidase from Fusarium oxysporum. J Bacteriol. 1978 Jan;133(1):53–58. doi: 10.1128/jb.133.1.53-58.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Kinouchi T., Ohnishi Y. Purification and characterization of 1-nitropyrene nitroreductases from Bacteroides fragilis. Appl Environ Microbiol. 1983 Sep;46(3):596–604. doi: 10.1128/aem.46.3.596-604.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Knackmuss H. J. Xenobiotic degradation in industrial sewage: haloaromatics as target substrates. Biochem Soc Symp. 1983;48:173–190. [PubMed] [Google Scholar]
  11. McCormick N. G., Feeherry F. E., Levinson H. S. Microbial transformation of 2,4,6-trinitrotoluene and other nitroaromatic compounds. Appl Environ Microbiol. 1976 Jun;31(6):949–958. doi: 10.1128/aem.31.6.949-958.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Parris G. E. Environmental and metabolic transformations of primary aromatic amines and related compounds. Residue Rev. 1980;76:1–30. doi: 10.1007/978-1-4612-6107-0_1. [DOI] [PubMed] [Google Scholar]
  13. Powlowski J. B., Dagley S. beta-Ketoadipate pathway in Trichosporon cutaneum modified for methyl-substituted metabolites. J Bacteriol. 1985 Sep;163(3):1126–1135. doi: 10.1128/jb.163.3.1126-1135.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Reineke W., Knackmuss H. J. Chemical structure and biodegradability of halogenate aromatic compounds. Substituent effects on 1,2-dioxygenation of benzoic acid. Biochim Biophys Acta. 1978 Sep 6;542(3):412–423. doi: 10.1016/0304-4165(78)90372-0. [DOI] [PubMed] [Google Scholar]
  15. Saarikoski J., Viluksela M. Relation between physicochemical properties of phenols and their toxicity and accumulation in fish. Ecotoxicol Environ Saf. 1982 Dec;6(6):501–512. doi: 10.1016/0147-6513(82)90032-x. [DOI] [PubMed] [Google Scholar]
  16. Spain J. C., Van Veld P. A. Adaptation of natural microbial communities to degradation of xenobiotic compounds: effects of concentration, exposure time, inoculum, and chemical structure. Appl Environ Microbiol. 1983 Feb;45(2):428–435. doi: 10.1128/aem.45.2.428-435.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Spain J. C., Wyss O., Gibson D. T. Enzymatic oxidation of p-nitrophenol. Biochem Biophys Res Commun. 1979 May 28;88(2):634–641. doi: 10.1016/0006-291x(79)92095-3. [DOI] [PubMed] [Google Scholar]
  18. Sylvestre M., Massé R., Messier F., Fauteux J., Bisaillon J. G., Beaudet R. Bacterial nitration of 4-chlorobiphenyl. Appl Environ Microbiol. 1982 Oct;44(4):871–877. doi: 10.1128/aem.44.4.871-877.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. VILLANUEVA J. R. THE PURIFICATION OF A NITRO-REDUCTASE OF NOCARDIA V. J Biol Chem. 1964 Mar;239:773–776. [PubMed] [Google Scholar]
  20. Zeyer J., Wasserfallen A., Timmis K. N. Microbial mineralization of ring-substituted anilines through an ortho-cleavage pathway. Appl Environ Microbiol. 1985 Aug;50(2):447–453. doi: 10.1128/aem.50.2.447-453.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES