Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1986 Sep;52(3):562–566. doi: 10.1128/aem.52.3.562-566.1986

Effect of organotins on fecal pollution indicator organisms.

G W Pettibone, J J Cooney
PMCID: PMC203573  PMID: 3094450

Abstract

Pure cultures of Escherichia coli and Streptococcus faecalis and environmental water samples were examined for the possibility that pollution involving organotin compounds could decrease the values for indicator organisms when standard methods were applied to the analysis of water samples. (CH3)2SnCl2 and (CH3)3SnCl decreased viable counts at about 10 to 100 mg of Sn liter-1 (8.4 X 10(-5) to 8.4 X 10(-4) mol of Sn liter-1), and tributyltin chloride was effective at about 0.1 to 1.0 mg of Sn liter-1 (8.4 X 10(-7) to 8.4 X 10(-6) mol of Sn liter-1. These concentrations, particularly for the methyltin compounds, are greater than the concentrations reported to date for these compounds in aquatic ecosystems. Thus, organotin compounds alone would not be likely to cause reductions in counts of indicator organisms measured by standard methods. However, it is suggested that, when combined with other environmental stressors or upon long exposure, organotins such as butyltins may contribute to the injury of indicator organisms.

Full text

PDF
562

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Auban E. G., Ripolles A. A., Domarco M. J. Relative frequencies and significance of faecal coliforms as indicators related to water temperature. Zentralbl Mikrobiol. 1983;138(5):329–336. [PubMed] [Google Scholar]
  2. Byrd J. T., Andreae M. O. Tin and methyltin species in seawater: concentrations and fluxes. Science. 1982 Nov 5;218(4572):565–569. doi: 10.1126/science.218.4572.565. [DOI] [PubMed] [Google Scholar]
  3. Camper A. K., McFeters G. A. Chlorine injury and the enumeration of waterborne coliform bacteria. Appl Environ Microbiol. 1979 Mar;37(3):633–641. doi: 10.1128/aem.37.3.633-641.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Domek M. J., LeChevallier M. W., Cameron S. C., McFeters G. A. Evidence for the role of copper in the injury process of coliform bacteria in drinking water. Appl Environ Microbiol. 1984 Aug;48(2):289–293. doi: 10.1128/aem.48.2.289-293.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Egan A. F. Enumeration of stressed cells of Escherichia coli. Can J Microbiol. 1979 Jan;25(1):116–118. doi: 10.1139/m79-018. [DOI] [PubMed] [Google Scholar]
  6. Fujioka R. S., Hashimoto H. H., Siwak E. B., Young R. H. Effect of sunlight on survival of indicator bacteria in seawater. Appl Environ Microbiol. 1981 Mar;41(3):690–696. doi: 10.1128/aem.41.3.690-696.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Goyal S. M., Gerba C. P., Melnick J. L. Occurrence and distribution of bacterial indicators and pathogens in canal communities along the Texas coast. Appl Environ Microbiol. 1977 Aug;34(2):139–149. doi: 10.1128/aem.34.2.139-149.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Guard H. E., Cobet A. B., Coleman W. M., 3rd Methylation of trimethyltin compounds by estuarine sediments. Science. 1981 Aug 14;213(4509):770–771. doi: 10.1126/science.213.4509.770. [DOI] [PubMed] [Google Scholar]
  9. Hallas L. E., Cooney J. J. Tin and tin-resistant microorganisms in chesapeake bay. Appl Environ Microbiol. 1981 Feb;41(2):466–471. doi: 10.1128/aem.41.2.466-471.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Hallas L. E., Means J. C., Cooney J. J. Methylation of tin by estuarine microorganisms. Science. 1982 Mar 19;215(4539):1505–1507. doi: 10.1126/science.215.4539.1505. [DOI] [PubMed] [Google Scholar]
  11. Hallas L. E., Thayer J. S., Cooney J. J. Factors affecting the toxic effect of tin on estuarine microorganisms. Appl Environ Microbiol. 1982 Jul;44(1):193–197. doi: 10.1128/aem.44.1.193-197.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. JONES G. E. EFFECT OF CHELATING AGENTS ON THE GROWTH OF ESCHERICHIA COLI IN SEAWATER. J Bacteriol. 1964 Mar;87:483–499. doi: 10.1128/jb.87.3.483-499.1964. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. LeChevallier M. W., Cameron S. C., McFeters G. A. New medium for improved recovery of coliform bacteria from drinking water. Appl Environ Microbiol. 1983 Feb;45(2):484–492. doi: 10.1128/aem.45.2.484-492.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. LeChevallier M. W., McFeters G. A. Interactions between heterotrophic plate count bacteria and coliform organisms. Appl Environ Microbiol. 1985 May;49(5):1338–1341. doi: 10.1128/aem.49.5.1338-1341.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. MILBAUER R., GROSSOWICZ N. Reactivation of chlorine-inactivated Escherichia coli. Appl Microbiol. 1959 Mar;7(2):67–70. doi: 10.1128/am.7.2.67-70.1959. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. MacLeod R. A., Kuo S. C., Gelinas R. Metabolic injury to bacteria. II. Metabolic injury induced by distilled water or Cu++ in the plating diluent. J Bacteriol. 1967 Mar;93(3):961–969. doi: 10.1128/jb.93.3.961-969.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Moss C. W., Speck M. L. Release of biologically active peptides from Escherichia coli at subzero temperatures. J Bacteriol. 1966 Mar;91(3):1105–1111. doi: 10.1128/jb.91.3.1105-1111.1966. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. SIJPESTEIJN A. K., RIJKENS F., LUIJTEN J. G., WILLEMSENS L. C. On the antifungal and antibacterial activity of some trisubstituted organogermanium, organotin and organolead compounds. Antonie Van Leeuwenhoek. 1962;28:346–356. doi: 10.1007/BF02538746. [DOI] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES