Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1987 Feb;53(2):224–229. doi: 10.1128/aem.53.2.224-229.1987

Surface-Active Agents from Two Bacillus Species

David G Cooper 1,*, Beena G Goldenberg 1
PMCID: PMC203641  PMID: 16347271

Abstract

Two Bacillus species were studied which produced bioemulsifiers; however, they were distinctly different compounds. Bacillus sp. strain IAF 343 produced unusually high yields of extracellular biosurfactant when grown on a medium containing only water-soluble substrates. The yield of 1 g/liter was appreciably better than those of most of the biosurfactants reported previously. This neutral lipid product, unlike most lipid biosurfactants, had significant emulsifying properties. It did not appreciably lower the surface tension of water. On the same medium, Bacillus cereus IAF 346 produced a more conventional polysaccharide bioemulsifier, but it also produced a monoglyceride biosurfactant. The bioemulsifier contained substantial amounts of glucosamine and originated as part of the capsule layer. The monoglyceride lowered the surface tension of water to 28 mN/m. It formed a strong association with the polysaccharide, and it was necessary to use ultrafiltration to effect complete separation. The removal of the monoglyceride caused the polysaccharide to precipitate. It is suggested that earlier reports of biopolymers which both stabilized emulsions and lowered surface tension were actually similar aggregates of lipid and bioemulsifier.

Full text

PDF
224

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Cirigliano M. C., Carman G. M. Purification and Characterization of Liposan, a Bioemulsifier from Candida lipolytica. Appl Environ Microbiol. 1985 Oct;50(4):846–850. doi: 10.1128/aem.50.4.846-850.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Cooper D. G. Biosurfactants. Microbiol Sci. 1986 May;3(5):145–149. [PubMed] [Google Scholar]
  3. Cooper D. G., Paddock D. A. Production of a Biosurfactant from Torulopsis bombicola. Appl Environ Microbiol. 1984 Jan;47(1):173–176. doi: 10.1128/aem.47.1.173-176.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Cooper D. G., Paddock D. A. Torulopsis petrophilum and Surface Activity. Appl Environ Microbiol. 1983 Dec;46(6):1426–1429. doi: 10.1128/aem.46.6.1426-1429.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Cooper D. G., Zajic J. E., Gerson D. F. Production of surface-active lipids by Corynebacterium lepus. Appl Environ Microbiol. 1979 Jan;37(1):4–10. doi: 10.1128/aem.37.1.4-10.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Käppeli O., Fiechter A. Component from the cell surface of the hydrocarbon-utilizing yeast Candida tropicalis with possible relation to hydrocarbon transport. J Bacteriol. 1977 Sep;131(3):917–921. doi: 10.1128/jb.131.3.917-921.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Macdonald C. R., Cooper D. G., Zajic J. E. Surface-Active Lipids from Nocardia erythropolis Grown on Hydrocarbons. Appl Environ Microbiol. 1981 Jan;41(1):117–123. doi: 10.1128/aem.41.1.117-123.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Makula R. A., Lockwood P. J., Finnerty W. R. Comparative analysis of the lipids of Acinetobacter species grown on hexadecane. J Bacteriol. 1975 Jan;121(1):250–258. doi: 10.1128/jb.121.1.250-258.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Parkinson M. Bio-surfactants. Biotechnol Adv. 1985;3(1):65–83. doi: 10.1016/0734-9750(85)90006-0. [DOI] [PubMed] [Google Scholar]
  10. STEWART J. E., KALLIO R. E., STEVENSON D. P., JONES A. C., SCHISSLER D. O. Bacterial hydrocarbon oxidation. I. Oxidation of n-hexadecane by a gram-negative coccus. J Bacteriol. 1959 Sep;78:441–448. doi: 10.1128/jb.78.3.441-448.1959. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Shabtai Y., Gutnick D. L. Tolerance of Acinetobacter calcoaceticus RAG-1 to the cationic surfactant cetyltrimethylammonium bromide: role of the bioemulsifier emulsan. Appl Environ Microbiol. 1985 Jan;49(1):192–197. doi: 10.1128/aem.49.1.192-197.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Zajic J. E., Guignard H., Gerson D. F. Properties and biodegradation of a bioemulsifier from Corynebacterium hydrocarboclastus. Biotechnol Bioeng. 1977 Sep;19(9):1303–1320. doi: 10.1002/bit.260190905. [DOI] [PubMed] [Google Scholar]
  13. Zuckerberg A., Diver A., Peeri Z., Gutnick D. L., Rosenberg E. Emulsifier of Arthrobacter RAG-1: chemical and physical properties. Appl Environ Microbiol. 1979 Mar;37(3):414–420. doi: 10.1128/aem.37.3.414-420.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES