Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1987 Mar;53(3):542–548. doi: 10.1128/aem.53.3.542-548.1987

Intergeneric protoplast fusion between Fusobacterium varium and Enterococcus faecium for enhancing dehydrodivanillin degradation.

W Chen, K Ohmiya, S Shimizu
PMCID: PMC203703  PMID: 3579269

Abstract

Intergeneric protoplast fusion between Fusobacterium varium (Pcs Glu+) and Enterococcus faecium (Pcr Glu-) was performed under strictly anaerobic conditions to improve dehydrodivanillin (DDV) degradation. The fusion frequency obtained from the selective medium (Pc+ Glu-) was about 0.9 X 10(-5) to 1.3 X 10(-5). The seven fusants isolated were all gram-negative anaerobes with rod shapes like that of F. varium and with main phenotypical properties of cocci like those of E. faecium such as esculin and starch hydrolysis, milk clotting, and lactate production. Five fusants showed enhanced DDV degradation activities that were 2 to 4 times higher than those of parental strains. Genetic relatedness between a fusant (FE7) and the parents was estimated by DNA-DNA Southern blot hybridization with 32P-labeled chromosomal DNA fragments of F. varium and E. faecium as respective probes. The fusant FE7 presented a very high cross-hybridization with both probes, indicating a high DNA homology between the fusant and both parental strains. Almost all the fusants obtained here have stably kept the properties described above for about 2 years. These results suggest that intergeneric gene transfer takes place through protoplast fusion and that the fusants that were obtained are stable recombinants.

Full text

PDF
542

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baltz R. H. Genetic recombination in Streptomyces fradiae by protoplast fusion and cell regeneration. J Gen Microbiol. 1978 Jul;107(1):93–102. doi: 10.1099/00221287-107-1-93. [DOI] [PubMed] [Google Scholar]
  2. Chen W., Ohmiya K., Shimizu S., Kawakami H. Degradation of dehydrodivanillin by anaerobic bacteria from cow rumen fluid. Appl Environ Microbiol. 1985 Jan;49(1):211–216. doi: 10.1128/aem.49.1.211-216.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Chen W., Ohmiya K., Shimizu S. Protoplast formation and regeneration of dehydrodivanillin-degrading strains of Fusobacterium varium and Enterococcus faecium. Appl Environ Microbiol. 1986 Oct;52(4):612–616. doi: 10.1128/aem.52.4.612-616.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Fleischer E. R., Vary P. S. Genetic analysis of fusion recombinants and presence of noncomplementing diploids in Bacillus megaterium. J Gen Microbiol. 1985 Apr;131(4):919–926. doi: 10.1099/00221287-131-4-919. [DOI] [PubMed] [Google Scholar]
  5. Fodor K., Alföldi L. Fusion of protoplasts of Bacillus megaterium. Proc Natl Acad Sci U S A. 1976 Jun;73(6):2147–2150. doi: 10.1073/pnas.73.6.2147. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Healy J. B., Young L. Y., Reinhard M. Methanogenic decomposition of ferulic Acid, a model lignin derivative. Appl Environ Microbiol. 1980 Feb;39(2):436–444. doi: 10.1128/aem.39.2.436-444.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Hopwood D. A. Genetic studies with bacterial protoplasts. Annu Rev Microbiol. 1981;35:237–272. doi: 10.1146/annurev.mi.35.100181.001321. [DOI] [PubMed] [Google Scholar]
  8. Hotchkiss R. D., Gabor M. H. Biparental products of bacterial protoplast fusion showing unequal parental chromosome expression. Proc Natl Acad Sci U S A. 1980 Jun;77(6):3553–3557. doi: 10.1073/pnas.77.6.3553. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Ochi K., Hitchcock M. J., Katz E. High-frequency fusion of Streptomyces parvulus or Streptomyces antibioticus protoplasts induced by polyethylene glycol. J Bacteriol. 1979 Sep;139(3):984–992. doi: 10.1128/jb.139.3.984-992.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Pettey T. M., Crawford D. L. Enhancement of Lignin Degradation in Streptomyces spp. by Protoplast Fusion. Appl Environ Microbiol. 1984 Feb;47(2):439–440. doi: 10.1128/aem.47.2.439-440.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Rigby P. W., Dieckmann M., Rhodes C., Berg P. Labeling deoxyribonucleic acid to high specific activity in vitro by nick translation with DNA polymerase I. J Mol Biol. 1977 Jun 15;113(1):237–251. doi: 10.1016/0022-2836(77)90052-3. [DOI] [PubMed] [Google Scholar]
  12. SAITO H., MIURA K. I. PREPARATION OF TRANSFORMING DEOXYRIBONUCLEIC ACID BY PHENOL TREATMENT. Biochim Biophys Acta. 1963 Aug 20;72:619–629. [PubMed] [Google Scholar]
  13. Sanchez-Rivas C., Lévi-Meyrueis C., Lazard-Monier F., Schaeffer P. Diploid state of phenotypically recombinant progeny arising after protoplast fusion in Bacillus subtilis. Mol Gen Genet. 1982;188(2):272–278. doi: 10.1007/BF00332687. [DOI] [PubMed] [Google Scholar]
  14. Schaeffer P., Cami B., Hotchkiss R. D. Fusion of bacterial protoplasts. Proc Natl Acad Sci U S A. 1976 Jun;73(6):2151–2155. doi: 10.1073/pnas.73.6.2151. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Smith M. D. Transformation and fusion of Streptococcus faecalis protoplasts. J Bacteriol. 1985 Apr;162(1):92–97. doi: 10.1128/jb.162.1.92-97.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Southern E. M. Detection of specific sequences among DNA fragments separated by gel electrophoresis. J Mol Biol. 1975 Nov 5;98(3):503–517. doi: 10.1016/s0022-2836(75)80083-0. [DOI] [PubMed] [Google Scholar]
  17. Southern E. Gel electrophoresis of restriction fragments. Methods Enzymol. 1979;68:152–176. doi: 10.1016/0076-6879(79)68011-4. [DOI] [PubMed] [Google Scholar]
  18. Toyama H., Yamaguchi K., Shinmyo A., Okada H. Protoplast Fusion of Trichoderma reesei, Using Immature Conidia. Appl Environ Microbiol. 1984 Feb;47(2):363–368. doi: 10.1128/aem.47.2.363-368.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Waitkins S. A., Anderson D. R., Todd F. K. An evaluation of the API-STREP identification system. Med Lab Sci. 1981 Jan;38(1):35–39. [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES