Abstract
Ruminal fluid from sheep fed hay plus concentrate diets containing 1.8% urea, 6% casein, or 6% egg albumin had proteolytic activities of 4.12, 3.02, or 4.00 mg of [14C]casein hydrolyzed ml-1 h-1, respectively. Dietary albumin had no effect on the rate of albumin breakdown relative to that of casein (0.06). Greater numbers of highly proteolytic bacteria, mainly Butyrivibrio spp., were isolated from the rumens of sheep receiving albumin. Albumin hydrolysis by these isolates was even slower relative to that of casein (0.03) than in ruminal fluid and was similar to that found in isolates from urea- and casein-fed sheep. Hence, there appears to be no mechanism by which ruminal bacteria can alter their proteolytic activity to utilize resistant soluble protein more effectively.
Full text
PDF


Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- ANNISON E. F. Nitrogen metabolism in the sheep; protein digestion in the rumen. Biochem J. 1956 Dec;64(4):705–714. doi: 10.1042/bj0640705. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brock F. M., Forsberg C. W., Buchanan-Smith J. G. Proteolytic activity of rumen microorganisms and effects of proteinase inhibitors. Appl Environ Microbiol. 1982 Sep;44(3):561–569. doi: 10.1128/aem.44.3.561-569.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cotta M. A., Hespell R. B. Proteolytic activity of the ruminal bacterium Butyrivibrio fibrisolvens. Appl Environ Microbiol. 1986 Jul;52(1):51–58. doi: 10.1128/aem.52.1.51-58.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hazlewood G. P., Orpin C. G., Greenwood Y., Black M. E. Isolation of proteolytic rumen bacteria by use of selective medium containing leaf fraction 1 protein (ribulosebisphosphate carboxylase). Appl Environ Microbiol. 1983 Jun;45(6):1780–1784. doi: 10.1128/aem.45.6.1780-1784.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kopecny J., Wallace R. J. Cellular location and some properties of proteolytic enzymes of rumen bacteria. Appl Environ Microbiol. 1982 May;43(5):1026–1033. doi: 10.1128/aem.43.5.1026-1033.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Leng R. A., Nolan J. V. Nitrogen metabolism in the rumen. J Dairy Sci. 1984 May;67(5):1072–1089. doi: 10.3168/jds.S0022-0302(84)81409-5. [DOI] [PubMed] [Google Scholar]
- Mahadevan S., Erfle J. D., Sauer F. D. Degradation of soluble and insoluble proteins by Bacteroides amylophilus protease and by rumen microorganisms. J Anim Sci. 1980 Apr;50(4):723–728. doi: 10.2527/jas1980.504723x. [DOI] [PubMed] [Google Scholar]
- Mangan J. L. Quantitative studies on nitrogen metabolism in the bovine rumen. The rate of proteolysis of casein and ovalbumin and the release and metabolism of free amino acids. Br J Nutr. 1972 Mar;27(2):261–283. doi: 10.1079/bjn19720092. [DOI] [PubMed] [Google Scholar]
- Nugent J. H., Mangan J. L. Characteristics of the rumen proteolysis of fraction I (18S) leaf protein from lucerne (Medicago sativa L). Br J Nutr. 1981 Jul;46(1):39–58. doi: 10.1079/bjn19810007. [DOI] [PubMed] [Google Scholar]
- Wallace R. J. Hydrolysis of 14C-labelled proteins by rumen micro-organisms and by proteolytic enzymes prepared from rumen bacteria. Br J Nutr. 1983 Sep;50(2):345–355. doi: 10.1079/bjn19830102. [DOI] [PubMed] [Google Scholar]
- Wallace R. J., Kopecny J. Breakdown of diazotized proteins and synthetic substrates by rumen bacterial proteases. Appl Environ Microbiol. 1983 Jan;45(1):212–217. doi: 10.1128/aem.45.1.212-217.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Whitelaw F. G., Bruce L. A., Eadie J. M., Shand W. J. 2-Aminoethylphosphonic acid concentrations in some rumen ciliate protozoa. Appl Environ Microbiol. 1983 Oct;46(4):951–953. doi: 10.1128/aem.46.4.951-953.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]