Abstract
A new Clostridium strain was isolated on starch at 60°C. Starch, pullulan, maltotriose, and maltose induced the synthesis of α-amylase and pullulanase, while glucose, ribose, fructose, and lactose did not. The formation of the amylolytic enzymes was dependent on growth and occurred predominantly in the exponential phase. The enzymes were largely cell bound during growth of the organism with 0.5% starch, but an increase of the starch concentration in the growth medium was accompanied by the excretion of α-amylase and pullulanase into the culture broth; but also by a decrease of total activity. α-Amylase, pullulanase, and α-glucosidase were active in a broad temperature range (40 to 85°C) and displayed temperature optima for activity at 60 to 70°C. During incubation with starch under aerobic conditions at 75°C for 2 h, the activity of both enzymes decreased to only 90 or 80%. The apparent Km values of α-amylase, pullulanase, and α-glucosidase for their corresponding substrates, starch, pullulan, and maltose were 0.35 mg/ml, 0.63 mg/ml, and 25 mM, respectively.
Full text
PDF






Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Clementi F., Rossi J., Costamagna L., Rosi J. Production of amylase(s) by Schwanniomyces castellii and Endomycopsis fibuligera. Antonie Van Leeuwenhoek. 1980;46(4):399–405. doi: 10.1007/BF00421986. [DOI] [PubMed] [Google Scholar]
- Harada T., Yokobayashi K., Misaki A. Formation of isoamylase by Pseudomonas. Appl Microbiol. 1968 Oct;16(10):1439–1444. doi: 10.1128/am.16.10.1439-1444.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hyun H. H., Zeikus J. G. General Biochemical Characterization of Thermostable Extracellular beta-Amylase from Clostridium thermosulfurogenes. Appl Environ Microbiol. 1985 May;49(5):1162–1167. doi: 10.1128/aem.49.5.1162-1167.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hyun H. H., Zeikus J. G. General Biochemical Characterization of Thermostable Pullulanase and Glucoamylase from Clostridium thermohydrosulfuricum. Appl Environ Microbiol. 1985 May;49(5):1168–1173. doi: 10.1128/aem.49.5.1168-1173.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hyun H. H., Zeikus J. G. Regulation and genetic enhancement of glucoamylase and pullulanase production in Clostridium thermohydrosulfuricum. J Bacteriol. 1985 Dec;164(3):1146–1152. doi: 10.1128/jb.164.3.1146-1152.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hyun H. H., Zeikus J. G. Simultaneous and Enhanced Production of Thermostable Amylases and Ethanol from Starch by Cocultures of Clostridium thermosulfurogenes and Clostridium thermohydrosulfuricum. Appl Environ Microbiol. 1985 May;49(5):1174–1181. doi: 10.1128/aem.49.5.1174-1181.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Medda S., Chandra A. K. New strains of Bacillus licheniformis and Bacillus coagulans producing thermostable alpha-amylase active at alkaline pH. J Appl Bacteriol. 1980 Feb;48(1):47–58. doi: 10.1111/j.1365-2672.1980.tb05205.x. [DOI] [PubMed] [Google Scholar]
- Moulin G., Galzy P. Remarque sur la régulation de la biosynthèse de l'alpha amylase de Pichia burtonii B. Z Allg Mikrobiol. 1978;18(5):329–333. [PubMed] [Google Scholar]
- Nakamura N., Watanabe K., Horikoshi K. Purification and some properties of alkaline pullulanase from a strain of bacillus no. 202-1, an alkalophilic microorganism. Biochim Biophys Acta. 1975 Jul 27;397(1):188–193. doi: 10.1016/0005-2744(75)90192-8. [DOI] [PubMed] [Google Scholar]
- Ruttloff H., Täufel A., Zickler F. Glucoamylase aus Endomycopsis bispora. I. Zur Produktion des Enzyms in Schüttelkultur. Z Allg Mikrobiol. 1979;19(3):195–201. doi: 10.1002/jobm.3630190307. [DOI] [PubMed] [Google Scholar]
- Saito N. A thermophilic extracellular -amylase from Bacillus licheniformis. Arch Biochem Biophys. 1973 Apr;155(2):290–298. doi: 10.1016/0003-9861(73)90117-3. [DOI] [PubMed] [Google Scholar]
- Takizawa N., Murooka Y. Cloning of the pullulanase gene and overproduction of pullulanase in Escherichia coli and Klebsiella aerogenes. Appl Environ Microbiol. 1985 Feb;49(2):294–298. doi: 10.1128/aem.49.2.294-298.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ueda S., Nanri N. Production of isoamylase by Escherichia intermedia. Appl Microbiol. 1967 May;15(3):492–496. doi: 10.1128/am.15.3.492-496.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Walker G. J. Metabolism of the reserve polysaccharide of Streptococcus mitis. Some properties of a pullulanase. Biochem J. 1968 Jun;108(1):33–40. doi: 10.1042/bj1080033. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wallenfels K., Bender H., Rached J. R. Pullulanase from Aerobacter aerogenes; production in a cell-bound state. Purification and properties of the enzyme. Biochem Biophys Res Commun. 1966 Feb 3;22(3):254–261. doi: 10.1016/0006-291x(66)90474-8. [DOI] [PubMed] [Google Scholar]
- Wolin E. A., Wolfe R. S., Wolin M. J. Viologen dye inhibition of methane formation by Methanobacillus omelianskii. J Bacteriol. 1964 May;87(5):993–998. doi: 10.1128/jb.87.5.993-998.1964. [DOI] [PMC free article] [PubMed] [Google Scholar]

