Abstract
Pseudomonas alcaligenes C-0 was isolated from activated sewage sludge by enrichment with 3-chlorobenzoate (3CB) as the sole carbon source. The carbon balance from [14C]3CB in pure culture could be accounted for in substrate, biomass, and CO2 from all sampling periods and inoculum densities (0.012, 0.092, 0.20, and 0.92 micrograms of dry cells X ml-1), and inorganic chloride was produced stoichiometrically. Monod parameters as determined in culture were compared with the kinetics of 3CB metabolism in soil with decreasing inoculum densities (1.9 X 10(-1), 1.9 X 10(-3), and 1.9 X 10(-5) micrograms of cells X g-1). 3CB was refractile to attack in soil by indigenous microflora, but it was completely metabolized upon inoculation with P. alcaligenes C-0. The saturation constant KS was much higher in soil than in culture, but the yield coefficient Y and the growth rate constant were the same in both systems: mu max = 0.32 h-1; Y = 34 micrograms cells X mumol-1; KS = 0.18 mM in culture and 6.0 mM in soil solution (1.1 mumol X g-1 of soil). The parameter estimates obtained from the highest inoculum density could be used for the lower inoculum densities with reasonable agreement between predicted and observed 3CB concentrations in soil, although the residual sum of squares was progressively higher. Since the growth rate of P. alcaligenes C-0 in soil was comparable to its growth rate in culture, inoculation should be a viable strategy for biodegradation of 3CB in soil if indigenous microflora are unable to exploit this metabolic niche.
Full text
PDF



Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Barles R. W., Daughton C. G., Hsieh D. P. Accelerated parathion degradation in soil inoculated with acclimated bacteria under field conditions. Arch Environ Contam Toxicol. 1979;8(6):647–660. doi: 10.1007/BF01054867. [DOI] [PubMed] [Google Scholar]
- Brunner W., Staub D., Leisinger T. Bacterial degradation of dichloromethane. Appl Environ Microbiol. 1980 Nov;40(5):950–958. doi: 10.1128/aem.40.5.950-958.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chatterjee D. K., Kellogg S. T., Hamada S., Chakrabarty A. M. Plasmid specifying total degradation of 3-chlorobenzoate by a modified ortho pathway. J Bacteriol. 1981 May;146(2):639–646. doi: 10.1128/jb.146.2.639-646.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chatterjee D. K., Kilbane J. J., Chakrabarty A. M. Biodegradation of 2,4,5-trichlorophenoxyacetic acid in soil by a pure culture of Pseudomonas cepacia. Appl Environ Microbiol. 1982 Aug;44(2):514–516. doi: 10.1128/aem.44.2.514-516.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dorn E., Hellwig M., Reineke W., Knackmuss H. J. Isolation and characterization of a 3-chlorobenzoate degrading pseudomonad. Arch Microbiol. 1974;99(1):61–70. doi: 10.1007/BF00696222. [DOI] [PubMed] [Google Scholar]
- Focht D. D., Brunner W. Kinetics of biphenyl and polychlorinated biphenyl metabolism in soil. Appl Environ Microbiol. 1985 Oct;50(4):1058–1063. doi: 10.1128/aem.50.4.1058-1063.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Furukawa K., Tomizuka N., Kamibayashi A. Effect of chlorine substitution on the bacterial metabolism of various polychlorinated biphenyls. Appl Environ Microbiol. 1979 Aug;38(2):301–310. doi: 10.1128/aem.38.2.301-310.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Furukawa K., Tomizuka N., Kamibayashi A. Metabolic breakdown of Kaneclors (polychlorobiphenyls) and their products by Acinetobacter sp. Appl Environ Microbiol. 1983 Jul;46(1):140–145. doi: 10.1128/aem.46.1.140-145.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Goldstein R. M., Mallory L. M., Alexander M. Reasons for possible failure of inoculation to enhance biodegradation. Appl Environ Microbiol. 1985 Oct;50(4):977–983. doi: 10.1128/aem.50.4.977-983.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Horowitz A., Suflita J. M., Tiedje J. M. Reductive dehalogenations of halobenzoates by anaerobic lake sediment microorganisms. Appl Environ Microbiol. 1983 May;45(5):1459–1465. doi: 10.1128/aem.45.5.1459-1465.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Scow K. M., Simkins S., Alexander M. Kinetics of mineralization of organic compounds at low concentrations in soil. Appl Environ Microbiol. 1986 May;51(5):1028–1035. doi: 10.1128/aem.51.5.1028-1035.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]