Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1987 Aug;53(8):1866–1871. doi: 10.1128/aem.53.8.1866-1871.1987

Rhizobacteria of Maize and Their Antifungal Activities

Bart Lambert 1,*, Frederik Leyns 1, Luk Van Rooyen 1,, Francis Gosselé 1,, Yves Papon 1, Jean Swings 1
PMCID: PMC204015  PMID: 16347411

Abstract

During the growing season of 1984, the rhizobacteria (including organisms from the rhizosphere soil, the rhizoplane, and internal root zones) of 47 maize plants (two varieties) sampled from different locations in France and at different growth stages were inventoried. Isolates were characterized by sodium dodecyl sulfate-polyacrylamide gel electrophoresis of their total cell proteins and were found to represent 352 different protein electrotypes. Maize seedlings were initially colonized by a small number of different strains. Densities reached up to 108 CFU/g of root. Later in the season, the population density decreased but the heterogeneity of the rhizobacterial populations increased. Fluorescent pseudomonads represented up to 35% of the total rhizobacterial population and comprised 43 different electrotypes. Other bacteria regularly present were Xanthomonas maltophilia, Serratia liquefaciens, Pseudomonas paucimobilis, and Bacillus spp. There was a very low similarity between rhizobacterial populations of plants of the same cultivar (LG5) within one field at different growth stages and also between rhizobacterial populations of the cultivars LG5 and BRIO42 on the same field. Most electrotypes (76%) were found on a single occasion. None of the 352 electrotypes was present on all plants. In the 1985 analysis the rhizobacteria of maize seedlings (one variety) sampled from one field were characterized. They represented 236 different protein electrotypes. Thirty-three isolates showed antifungal activity against major maize pathogens; they comprised four Pseudomonas cepacia strains, producing pyrrolnitrin as well as another unknown antifungal compound.

Full text

PDF
1866

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Debette J., Blondeau R. Présence de Pseudomonas maltophilia dans la rhizosphère de quelques plantes cultivées. Can J Microbiol. 1980 Apr;26(4):460–463. [PubMed] [Google Scholar]
  2. Elander R. P., Mabe J. A., Hamill R. H., Gorman M. Metabolism of tryptophans by Pseudomonas aureofaciens. VI. Production of pyrrolnitrin by selected Pseudomonas species. Appl Microbiol. 1968 May;16(5):753–758. doi: 10.1128/am.16.5.753-758.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Kersters K., De Ley J. Classification and identification of bacteria by electrophoresis of their proteins. Soc Appl Bacteriol Symp Ser. 1980;8:273–297. [PubMed] [Google Scholar]
  4. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  5. Okon Y., Albrecht S. L., Burris R. H. Methods for Growing Spirillum lipoferum and for Counting It in Pure Culture and in Association with Plants. Appl Environ Microbiol. 1977 Jan;33(1):85–88. doi: 10.1128/aem.33.1.85-88.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Rovira A. D., Sands D. C. Fluorescent pseudomonads--a residual component in the soil microflora? J Appl Bacteriol. 1971 Mar;34(1):253–259. doi: 10.1111/j.1365-2672.1971.tb02284.x. [DOI] [PubMed] [Google Scholar]
  7. Sands D. C., Rovira A. D. Pseudomonas fluorescens biotype G, the dominant fluorescent pseudomonad in South Australian soils and wheat rhizospheres. J Appl Bacteriol. 1971 Mar;34(1):261–275. doi: 10.1111/j.1365-2672.1971.tb02285.x. [DOI] [PubMed] [Google Scholar]
  8. Schroth M. N., Hancock J. G. Disease-suppressive soil and root-colonizing bacteria. Science. 1982 Jun 25;216(4553):1376–1381. doi: 10.1126/science.216.4553.1376. [DOI] [PubMed] [Google Scholar]
  9. Schroth M. N., Hancock J. G. Selected topics in biological control. Annu Rev Microbiol. 1981;35:453–476. doi: 10.1146/annurev.mi.35.100181.002321. [DOI] [PubMed] [Google Scholar]
  10. Stewart B. J., Leatherwood J. M. Derepressed synthesis of cellulase by Cellulomonas. J Bacteriol. 1976 Nov;128(2):609–615. doi: 10.1128/jb.128.2.609-615.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES