Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1987 Sep;53(9):2009–2012. doi: 10.1128/aem.53.9.2009-2012.1987

Effect of dietary copper sulfate, Aureo SP250, or clinoptilolite on ureolytic bacteria found in the pig large intestine.

V H Varel 1, I M Robinson 1, W G Pond 1
PMCID: PMC204049  PMID: 2823707

Abstract

The predominant ureolytic bacteria in the pig large intestine were determined while growing pigs were fed a basal diet or basal diet plus copper sulfate, Aureo SP250, or clinoptilolite. Fecal samples were collected from four pigs fed each diet at 3, 9, and 14 weeks and analyzed for total colony counts and percent ureolytic bacteria. Fecal urease activity, ammonia nitrogen, and identity of the ureolytic bacteria were determined at 14 weeks. Copper sulfate and Aureo SP250 reduced the number of ureolytic organisms, with a marked decrease occurring in the Streptococcus spp., which made up 74% of the ureolytic isolates from the pigs on the basal diet. Other ureolytic species detected at lower concentrations were Staphylococcus spp., Selenomonas ruminantium, Bacteroides multiacidus, and Eubacterium limosum. Copper sulfate also reduced fecal urease activity (P less than 0.10). Fecal ammonia concentrations were not different between pigs fed the various diets. These data suggest that the streptococci are the most numerous ureolytic species in the pig intestinal tract and are significantly reduced by copper sulfate and Aureo SP250; however, only copper sulfate reduced intestinal urease activity.

Full text

PDF
2009

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bryant M. P. Commentary on the Hungate technique for culture of anaerobic bacteria. Am J Clin Nutr. 1972 Dec;25(12):1324–1328. doi: 10.1093/ajcn/25.12.1324. [DOI] [PubMed] [Google Scholar]
  2. CHANEY A. L., MARBACH E. P. Modified reagents for determination of urea and ammonia. Clin Chem. 1962 Apr;8:130–132. [PubMed] [Google Scholar]
  3. Crociani F., Biavati B., Castagnoli P., Matteuzzi D. Anaerobic ureolytic bacteria from caecal content and soft faeces of rabbit. J Appl Bacteriol. 1984 Aug;57(1):83–88. doi: 10.1111/j.1365-2672.1984.tb02359.x. [DOI] [PubMed] [Google Scholar]
  4. Edmonds M. S., Izquierdo O. A., Baker D. H. Feed additive studies with newly weaned pigs: efficacy of supplemental copper, antibiotics and organic acids. J Anim Sci. 1985 Feb;60(2):462–469. doi: 10.2527/jas1985.602462x. [DOI] [PubMed] [Google Scholar]
  5. JONES G. A., MACLEOD R. A., BLACKWOOD A. C. UREOLYTIC RUMEN BACTERIA. I. CHARACTERISTICS OF THE MICROFLORA FROM A UREA-FED SHEEP. Can J Microbiol. 1964 Jun;10:371–378. doi: 10.1139/m64-050. [DOI] [PubMed] [Google Scholar]
  6. John A., Isaacson H. R., Bryant M. P. Isolation and characteristics of a ureolytic strain of Selenomonas ruminatium. J Dairy Sci. 1974 Sep;57(9):1003–1014. doi: 10.3168/jds.s0022-0302(74)85001-0. [DOI] [PubMed] [Google Scholar]
  7. LEVENSON S. M., CROWLEY L. V., HOROWITZ R. E., MALM O. J. The metabolism of carbon-labeled urea in the germ free rat. J Biol Chem. 1959 Aug;234(8):2061–2062. [PubMed] [Google Scholar]
  8. Macfarlane G. T., Cummings J. H., Allison C. Protein degradation by human intestinal bacteria. J Gen Microbiol. 1986 Jun;132(6):1647–1656. doi: 10.1099/00221287-132-6-1647. [DOI] [PubMed] [Google Scholar]
  9. Robinson I. M., Allison M. J., Bucklin J. A. Characterization of the cecal bacteria of normal pigs. Appl Environ Microbiol. 1981 Apr;41(4):950–955. doi: 10.1128/aem.41.4.950-955.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Robinson I. M., Whipp S. C., Bucklin J. A., Allison M. J. Characterization of predominant bacteria from the colons of normal and dysenteric pigs. Appl Environ Microbiol. 1984 Nov;48(5):964–969. doi: 10.1128/aem.48.5.964-969.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Salanitro J. P., Blake I. G., Muirhead P. A. Isolation and identification of fecal bacteria from adult swine. Appl Environ Microbiol. 1977 Jan;33(1):79–84. doi: 10.1128/aem.33.1.79-84.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Salanitro J. P., Fairchilds I. G., Zgornicki Y. D. Isolation, culture characteristics, and identification of anaerobic bacteria from the chicken cecum. Appl Microbiol. 1974 Apr;27(4):678–687. doi: 10.1128/am.27.4.678-687.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Shurson G. C., Ku P. K., Miller E. R., Yokoyama M. T. Effects of zeolite a or clinoptilolite in diets of growing swine. J Anim Sci. 1984 Dec;59(6):1536–1545. doi: 10.2527/jas1984.5961536x. [DOI] [PubMed] [Google Scholar]
  14. Smith C. J., Hespell R. B., Bryant M. P. Regulation of urease and ammonia assimilatory enzymes in Selenomonas ruminantium. Appl Environ Microbiol. 1981 Jul;42(1):89–96. doi: 10.1128/aem.42.1.89-96.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Spears J. W., Hatfield E. E. Nickel for ruminants. I. Influence of dietary nickel on ruminal urease activity. J Anim Sci. 1978 Dec;47(6):1345–1350. doi: 10.2527/jas1978.4761345x. [DOI] [PubMed] [Google Scholar]
  16. Summerskill W. H., Wolpert E. Ammonia metabolism in the gut. Am J Clin Nutr. 1970 May;23(5):633–639. doi: 10.1093/ajcn/23.5.633. [DOI] [PubMed] [Google Scholar]
  17. Suzuki K., Benno Y., Mitsuoka T., Takebe S., Kobashi K., Hase J. Urease-producing species of intestinal anaerobes and their activities. Appl Environ Microbiol. 1979 Mar;37(3):379–382. doi: 10.1128/aem.37.3.379-382.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Varel V. H., Bryant M. P., Holdeman L. V., Moore W. E. Isolation of ureolytic Peptostreptococcus productus from feces using defined medium; failure of common urease tests. Appl Microbiol. 1974 Oct;28(4):594–599. doi: 10.1128/am.28.4.594-599.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Varel V. H., Pond W. G., Yen J. T. Influence of dietary fiber on the performance and cellulase activity of growing-finishing swine. J Anim Sci. 1984 Aug;59(2):388–393. doi: 10.2527/jas1984.592388x. [DOI] [PubMed] [Google Scholar]
  20. Visek W. J. Effects of urea hydrolysis on cell life-span and metabolism. Fed Proc. 1972 May-Jun;31(3):1178–1193. [PubMed] [Google Scholar]
  21. Wozny M. A., Bryant M. P., Holdeman L. V., Moore W. E. Urease assay and urease-producing species of anaerobes in the bovine rumen and human feces. Appl Environ Microbiol. 1977 May;33(5):1097–1104. doi: 10.1128/aem.33.5.1097-1104.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Wrong O. M., Vince A. J., Waterlow J. C. The contribution of endogenous urea to faecal ammonia in man, determined by 15N labelling of plasma urea. Clin Sci (Lond) 1985 Feb;68(2):193–199. doi: 10.1042/cs0680193. [DOI] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES