Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1987 Sep;53(9):2077–2081. doi: 10.1128/aem.53.9.2077-2081.1987

Inactivation of animal viruses during sewage sludge treatment.

S K Spillmann 1, F Traub 1, M Schwyzer 1, R Wyler 1
PMCID: PMC204061  PMID: 2823708

Abstract

Using a previously developed filter adsorption technique, the inactivation of a human rotavirus, a coxsackievirus B5, and a bovine parvovirus was monitored during sludge treatment processes. During conventional anaerobic mesophilic digestion at 35 to 36 degrees C, only minor inactivation of all three viruses occurred. The k' values measured were 0.314 log10 unit/day for rotavirus, 0.475 log10 unit/day for coxsackievirus B5, and 0.944 log10 unit/day for parvovirus. However, anaerobic thermophilic digestion at 54 to 56 degrees C led to rapid inactivation of rotavirus (k' greater than 8.5 log10 units/h) and of coxsackievirus B5 (k' greater than 0.93 log10 unit/min). Similarly, aerobic thermophilic fermentation at 60 to 61 degrees C rapidly inactivated rotavirus (k' = 0.75 log10 unit/min) and coxsackievirus B5 (k' greater than 1.67 log10 units/min). Infectivity of parvovirus, however, was only reduced by 0.213 log10 unit/h during anaerobic thermophilic digestion and by 0.353 log10 unit/h during aerobic thermophilic fermentation. Furthermore, pasteurization at 70 degrees C for 30 min inactivated the parvovirus by 0.72 log10 unit/30 min. In all experiments the contribution of temperature to the total inactivation was determined separately and was found to be predominant at process temperatures above 54 degrees C. In conclusion, the most favorable treatment to render sludge hygienically safe from the virological point of view would be a thermal treatment (60 degrees C) to inactivate thermolabile viruses, followed by an anaerobic mesophilic digestion to eliminate thermostable viruses that are more sensitive to chemical and microbial inactivations.

Full text

PDF
2077

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ABINANTI F. R., WARFIELD M. S. Recovery of a hemadsorbing virus (HADEN) from the gastrointestinal tract of calves. Virology. 1961 Jun;14:288–289. doi: 10.1016/0042-6822(61)90206-9. [DOI] [PubMed] [Google Scholar]
  2. Bates J., Goddard M. R., Butler M. The detection of rotaviruses in products of wastewater treatment. J Hyg (Lond) 1984 Dec;93(3):639–643. doi: 10.1017/s0022172400065219. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bertoni G., Keist R., Groscurth P., Wyler R., Nicolet J., Peterhans E. A chemiluminescent assay for mycoplasmas in cell cultures. J Immunol Methods. 1985 Apr 8;78(1):123–133. doi: 10.1016/0022-1759(85)90335-7. [DOI] [PubMed] [Google Scholar]
  4. Durham P. J., Johnson R. H. Plaque titration and inhibition tests for bovine parvovirus. J Gen Virol. 1984 Aug;65(Pt 8):1425–1429. doi: 10.1099/0022-1317-65-8-1425. [DOI] [PubMed] [Google Scholar]
  5. Durham P. J., Johnson R. H. Studies on the replication of a bovine parvovirus. Vet Microbiol. 1985 Jan;10(2):165–177. doi: 10.1016/0378-1135(85)90018-5. [DOI] [PubMed] [Google Scholar]
  6. Elkana Y., Manaa A., Marzouk Y., Manor J., Halmut T., Herscovici M., Barak S. Detection of hepatitis A virus in sewage. J Virol Methods. 1983 Dec;7(5-6):259–262. doi: 10.1016/0166-0934(83)90077-0. [DOI] [PubMed] [Google Scholar]
  7. Friedli K., Metzler A. E. Reactivity of monoclonal antibodies to proteins of a neurotropic bovine herpesvirus 1 (BHV-1) strain and to proteins of representative BHV-1 strains. Arch Virol. 1987;94(1-2):109–122. doi: 10.1007/BF01313729. [DOI] [PubMed] [Google Scholar]
  8. Guttman-Bass N., Catalano-Sherman J. Humic acid interference with virus recovery by electropositive microporous filters. Appl Environ Microbiol. 1986 Sep;52(3):556–561. doi: 10.1128/aem.52.3.556-561.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Knowlton D. R., Ward R. L. Characterization of virucidal agents in activated sludge. Appl Environ Microbiol. 1987 Apr;53(4):621–626. doi: 10.1128/aem.53.4.621-626.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Sattar S. A., Westwood J. C. Recovery of viruses from field samples of raw, digested, and lagoon-dried sludges. Bull World Health Organ. 1979;57(1):105–108. [PMC free article] [PubMed] [Google Scholar]
  11. Siegl G., Weitz M., Kronauer G. Stability of hepatitis A virus. Intervirology. 1984;22(4):218–226. doi: 10.1159/000149554. [DOI] [PubMed] [Google Scholar]
  12. Traub F., Spillmann S. K., Wyler R. Method for determining virus inactivation during sludge treatment processes. Appl Environ Microbiol. 1986 Sep;52(3):498–503. doi: 10.1128/aem.52.3.498-503.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Ward R. L., Ashley C. S. Effects of wastewater sludge and its detergents on the stability of rotavirus. Appl Environ Microbiol. 1980 Jun;39(6):1154–1158. doi: 10.1128/aem.39.6.1154-1158.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Ward R. L., Ashley C. S. Identification of detergents as components of wastewater sludge that modify the thermal stability of reovirus and enteroviruses. Appl Environ Microbiol. 1978 Dec;36(6):889–897. doi: 10.1128/aem.36.6.889-897.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Ward R. L., Ashley C. S. Identification of the virucidal agent in wastewater sludge. Appl Environ Microbiol. 1977 Apr;33(4):860–864. doi: 10.1128/aem.33.4.860-864.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Ward R. L., Ashley C. S., Moseley R. H. Heat inactivation of poliovirus in wastewater sludge. Appl Environ Microbiol. 1976 Sep;32(3):339–346. doi: 10.1128/aem.32.3.339-346.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Wyatt R. G., James W. D., Bohl E. H., Theil K. W., Saif L. J., Kalica A. R., Greenberg H. B., Kapikian A. Z., Chanock R. M. Human rotavirus type 2: cultivation in vitro. Science. 1980 Jan 11;207(4427):189–191. doi: 10.1126/science.6243190. [DOI] [PubMed] [Google Scholar]
  18. Wyler R., Murbach A., Möhl H. An imidazole derivative (Econazole) as an antifungal agent in cell culture systems. In Vitro. 1979 Oct;15(10):745–750. doi: 10.1007/BF02618300. [DOI] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES