Skip to main content
British Journal of Experimental Pathology logoLink to British Journal of Experimental Pathology
. 1989 Dec;70(6):621–626.

Collagen cross-link synthesis in cultured vascular endothelium.

C I Levene 1, G Heale 1, S P Robins 1
PMCID: PMC2040723  PMID: 2605112

Abstract

Cultured vascular endothelium secretes the enzyme lysyl oxidase which cross-links both collagen and elastin. The major reducible cross-link synthesized by cultured human umbilical arterial and venous endothelium is dihydroxylysinonorleucine (di-OH-LNL). Treatment of the cultures with the lathyrogen beta-aminopropionitrile (BAPN), which inhibits lysyl oxidase, inhibited synthesis of this cross-link. Cultured porcine aortic endothelium synthesized three major reducible lysine-derived cross-links: dihydroxylysinonorleucine (di-OH-LNL), hydroxylysinonorleucine (OH-LNL) and lysinonorleucine (LNL); BAPN also inhibited synthesis of these three cross-links. Earlier in-vivo observations on BAPN-treated chick embryos had shown a 20% increase in the hydration of cartilage and other tissues; the likeliest explanation was that cross-link disruption permitted the proteoglycans in cartilage to express their hydrophilic nature when freed of their collagenous network. Capillary basement membrane contains laminin, proteoglycan and type IV collagen. Following the finding of oedema in lathyritic cartilage, we would propose that agents which disrupt collagen cross-links in cultured vascular endothelium, damaging capillary basement membrane, be considered as one possible mechanism in the pathogenesis of oedema.

Full text

PDF
621

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barnes M. J., Morton L. F., Levene C. I. Synthesis of interstitial collagens by pig aortic endothelial cells in culture. Biochem Biophys Res Commun. 1978 Oct 16;84(3):646–653. doi: 10.1016/0006-291x(78)90754-4. [DOI] [PubMed] [Google Scholar]
  2. Bartlet C. P., Heale G., Levene C. I. Some factors regulating collagen polymorphism in cultured porcine and bovine aortic endothelium. Atherosclerosis. 1985 Mar;54(3):301–309. doi: 10.1016/0021-9150(85)90123-6. [DOI] [PubMed] [Google Scholar]
  3. Eyre D. R., Paz M. A., Gallop P. M. Cross-linking in collagen and elastin. Annu Rev Biochem. 1984;53:717–748. doi: 10.1146/annurev.bi.53.070184.003441. [DOI] [PubMed] [Google Scholar]
  4. Gallop P. M., Paz M. A. Posttranslational protein modifications, with special attention to collagen and elastin. Physiol Rev. 1975 Jul;55(3):418–487. doi: 10.1152/physrev.1975.55.3.418. [DOI] [PubMed] [Google Scholar]
  5. Jaffe E. A., Nachman R. L., Becker C. G., Minick C. R. Culture of human endothelial cells derived from umbilical veins. Identification by morphologic and immunologic criteria. J Clin Invest. 1973 Nov;52(11):2745–2756. doi: 10.1172/JCI107470. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. LEVENE C. I., GROSS J. Alterations in state of molecular aggregation of collagen induced in chick embryos by beta-aminopropionitrile (lathyrus factor). J Exp Med. 1959 Nov 1;110:771–790. doi: 10.1084/jem.110.5.771. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Layman D. L., Narayanan A. S., Martin G. R. The production of lysyl oxidase by human fibroblasts in culture. Arch Biochem Biophys. 1972 Mar;149(1):97–101. doi: 10.1016/0003-9861(72)90302-5. [DOI] [PubMed] [Google Scholar]
  8. Levene C. I., Bartlet C. P., Heale G. Identification of the connective tissues synthesized by the venous and arterial endothelia of the human umbilical cord: a comparative study. Br J Exp Pathol. 1988 Apr;69(2):177–188. [PMC free article] [PubMed] [Google Scholar]
  9. Levene C. I., Bartlet C., Heale G. Phenotypic changes in morphology and collagen polymorphism of cultured bovine and porcine aortic endothelium. Atherosclerosis. 1984 Jul;52(1):59–71. doi: 10.1016/0021-9150(84)90156-4. [DOI] [PubMed] [Google Scholar]
  10. Narayanan A. S., Siegel R. C., Martin G. R. On the inhibition of lysyl oxidase by -aminopropionitrile. Biochem Biophys Res Commun. 1972 Jan 31;46(2):745–751. doi: 10.1016/s0006-291x(72)80203-1. [DOI] [PubMed] [Google Scholar]
  11. PARTRIDGE S. M., ELSDEN D. F., THOMAS J. Constitution of the cross-linkages in elastin. Nature. 1963 Mar 30;197:1297–1298. doi: 10.1038/1971297a0. [DOI] [PubMed] [Google Scholar]
  12. Pinnell S. R., Martin G. R. The cross-linking of collagen and elastin: enzymatic conversion of lysine in peptide linkage to alpha-aminoadipic-delta-semialdehyde (allysine) by an extract from bone. Proc Natl Acad Sci U S A. 1968 Oct;61(2):708–716. doi: 10.1073/pnas.61.2.708. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Robins S. P. Analysis of the crosslinking components in collagen and elastin. Methods Biochem Anal. 1982;28:329–379. doi: 10.1002/9780470110485.ch8. [DOI] [PubMed] [Google Scholar]
  14. SHIELDS G. S., COULSON W. F., KIMBALL D. A., CARNES W. H., CARTWRIGHT G. E., WINTROBE M. M. Studies on copper metabolism. 32. Cardiovascular lesions in copper-deficient swine. Am J Pathol. 1962 Nov;41:603–621. [PMC free article] [PubMed] [Google Scholar]
  15. Stanley J. R., Woodley D. T., Katz S. I., Martin G. R. Structure and function of basement membrane. J Invest Dermatol. 1982 Jul;79 (Suppl 1):69s–72s. doi: 10.1111/1523-1747.ep12545830. [DOI] [PubMed] [Google Scholar]

Articles from British journal of experimental pathology are provided here courtesy of Wiley

RESOURCES