Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1987 Sep;53(9):2189–2192. doi: 10.1128/aem.53.9.2189-2192.1987

A more accurate method for measurement of tuberculocidal activity of disinfectants.

J M Ascenzi 1, R J Ezzell 1, T M Wendt 1
PMCID: PMC204079  PMID: 3314707

Abstract

The current Association of Official Analytical Chemists method for testing tuberculocidal activity of disinfectants has been shown to be inaccurate and to have a high degree of variability. An alternate test method is proposed which is more accurate, more precise, and quantitative. A suspension of Mycobacterium bovis BCG was exposed to a variety of disinfectant chemicals and a kill curve was constructed from quantitative data. Data are presented that show the discrepancy between current claims, determined by the Association of Official Analytical Chemists method, of selected commercially available products and claims generated by the proposed method. The effects of different recovery media were examined. The data indicated that Mycobacteria 7H11 and Middlebrook 7H10 agars were equal in recovery of the different chemically treated cells, with Lowenstein-Jensen agar having approximately the same recovery rate but requiring incubation for up to 3 weeks longer for countability. The kill curves generated for several different chemicals were reproducible, as indicated by the standard deviations of the slopes and intercepts of the linear regression curves.

Full text

PDF
2189

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adair F. W., Geftic S. G., Gelzer J. Resistance of Pseudomonas to quaternary ammonium compounds. I. Growth in benzalkonium chloride solution. Appl Microbiol. 1969 Sep;18(3):299–302. doi: 10.1128/am.18.3.299-302.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Ascenzi J. M., Ezzell R. J., Wendt T. M. Evaluation of carriers used in the test methods of the Association of Official Analytical Chemists. Appl Environ Microbiol. 1986 Jan;51(1):91–94. doi: 10.1128/aem.51.1.91-94.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bergan T., Lystad A. Evaluation of non-phenolics by a quantitative technique. Acta Pathol Microbiol Scand B Microbiol Immunol. 1972;80(1):79–88. doi: 10.1111/j.1699-0463.1972.tb00132.x. [DOI] [PubMed] [Google Scholar]
  4. Berkelman R. L., Anderson R. L., Davis B. J., Highsmith A. K., Petersen N. J., Bond W. W., Cook E. H., Mackel D. C., Favero M. S., Martone W. J. Intrinsic bacterial contamination of a commercial iodophor solution: investigation of the implicated manufacturing plant. Appl Environ Microbiol. 1984 Apr;47(4):752–756. doi: 10.1128/aem.47.4.752-756.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Collins F. M. Kinetics of the tuberculocidal response by alkaline glutaraldehyde in solution and on an inert surface. J Appl Bacteriol. 1986 Jul;61(1):87–93. doi: 10.1111/j.1365-2672.1986.tb03762.x. [DOI] [PubMed] [Google Scholar]
  6. Collins F. M. Use of membrane filters for measurement of mycobactericidal activity of alkaline glutaraldehyde solution. Appl Environ Microbiol. 1987 Apr;53(4):737–739. doi: 10.1128/aem.53.4.737-739.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Holmberg S. D., Osterholm M. T., Senger K. A., Cohen M. L. Drug-resistant Salmonella from animals fed antimicrobials. N Engl J Med. 1984 Sep 6;311(10):617–622. doi: 10.1056/NEJM198409063111001. [DOI] [PubMed] [Google Scholar]
  8. Lind A., Lundholm M., Pedersen G., Sundaeus V., Wåhlén P. A carrier method for the assessment of the effectiveness of disinfectants against Mycobacterium tuberculosis. J Hosp Infect. 1986 Jan;7(1):60–67. doi: 10.1016/0195-6701(86)90027-7. [DOI] [PubMed] [Google Scholar]
  9. Meers P. D., Churcher G. M. Membrane filtration in the study of antimicrobial drugs. J Clin Pathol. 1974 Apr;27(4):288–291. doi: 10.1136/jcp.27.4.288. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Newman K. A., Tenney J. H., Oken H. A., Moody M. R., Wharton R., Schimpff S. C. Persistent isolation of an unusual Pseudomonas species from a phenolic disinfectant system. Infect Control. 1984 May;5(5):219–222. doi: 10.1017/s0195941700060148. [DOI] [PubMed] [Google Scholar]
  11. Prickett J. M., Rawal B. D. Membrane filtration method for the evaluation of quaternary ammonium disinfectants. Lab Pract. 1972 Jun;21(6):425–428. [PubMed] [Google Scholar]
  12. Prince J., Deverill C. E., Ayliffe G. A. A membrane filter technique for testing disinfectants. J Clin Pathol. 1975 Jan;28(1):71–76. doi: 10.1136/jcp.28.1.71. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Reybrouck G. Factors influencing the assessment of the pseudomonacidal activity of disinfectants by a quantitative suspension test. II. The post-disinfection recovery of surviving organisms. Zentralbl Bakteriol Orig B. 1977 Sep;165(1):113–125. [PubMed] [Google Scholar]
  14. Sautter R. L., Mattman L. H., Legaspi R. C. Serratia marcescens meningitis associated with a contaminated benzalkonium chloride solution. Infect Control. 1984 May;5(5):223–225. doi: 10.1017/s019594170006015x. [DOI] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES