Skip to main content
British Journal of Experimental Pathology logoLink to British Journal of Experimental Pathology
. 1984 Aug;65(4):419–430.

The role of nuclei, polyribosomes and cytosol factors in the onset of the acute-phase reaction in the liver cell.

R Piccoletti, M G Aletti, F Cajone, A Bernelli-Zazzera
PMCID: PMC2040993  PMID: 6205674

Abstract

Nuclei isolated from livers of turpentine-treated rats show an increased RNA synthesis, reaching a maximum at 10 h after treatment. The stimulation affects both alpha-amanitin-resistant and alpha-amanitin-sensitive activities, suggesting that pre-ribosomal and pre-messenger RNA formation are activated at the same time and to the same extent. The amount of ribosomal RNA, which is still normal 10 h after treatment, increases significantly at 24 h, but the increase is limited to the bound ribosomes, in keeping with the fact that the acute phase reactants are export proteins. These ribosomes, however, are not more active per se and the stimulation of protein synthesis in cell-free preparations depends essentially on an increased activity of soluble factors located in the cytosol. In living cells these soluble factors co-operate with an increased amount of some specific mRNAs and an expanded population of membrane-bound polyribosomes, thus leading to the increased protein synthesis peculiar to the liver of turpentine-treated rats.

Full text

PDF
419

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Airhart J., Vidrich A., Khairallah E. A. Compartmentation of free amino acids for protein synthesis in rat liver. Biochem J. 1974 Jun;140(3):539–545. doi: 10.1042/bj1400539. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. BURTON K. A study of the conditions and mechanism of the diphenylamine reaction for the colorimetric estimation of deoxyribonucleic acid. Biochem J. 1956 Feb;62(2):315–323. doi: 10.1042/bj0620315. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Baglia F. A., Kwan S. W., Fuller G. M. Haptoglobin biosynthesis in rats. Immunological identification of polysomes synthesizing haptoglobin and quantitation of haptoglobin in the cytoplasm of liver cells. Biochim Biophys Acta. 1982 Jan 26;696(1):107–113. doi: 10.1016/0167-4781(82)90016-1. [DOI] [PubMed] [Google Scholar]
  4. Bratcher S. C., Shetlar M. R. Glycoprotein biosynthesis in a rat liver microsome system following inflammation. Am J Physiol. 1974 Dec;227(6):1394–1398. doi: 10.1152/ajplegacy.1974.227.6.1394. [DOI] [PubMed] [Google Scholar]
  5. Cooper H. L. Degradation of 28S RNA late in ribosomal RNA maturation in nongrowing lymphocytes and its reversal after growth stimulation. J Cell Biol. 1973 Oct;59(1):250–254. doi: 10.1083/jcb.59.1.250. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Courtoy P. J., Lombart C., Feldmann G., Moguilevsky N., Rogier E. Synchronous increase of four acute phase proteins synthesized by the same hepatocytes during the inflammatory reaction: a combined biochemical and morphologic kinetics study in the rat. Lab Invest. 1981 Feb;44(2):105–115. [PubMed] [Google Scholar]
  7. Hooper D. C., Steer C. J., Dinarello C. A., Peacock A. C. Haptoglobin and albumin synthesis in isolated rat hepatocytes. Response to potential mediators of the acute-phase reaction. Biochim Biophys Acta. 1981 Mar 26;653(1):118–129. doi: 10.1016/0005-2787(81)90110-6. [DOI] [PubMed] [Google Scholar]
  8. Jamieson J. C., Morrison K. E., Molasky D., Turchen B. Studies on acute phase proteins of rat serum. V Effect on induces inflammation on the synthesis of albumin and alpha-1-acid glycoprotein by liver slices. Can J Biochem. 1975 Apr;53(4):401–414. doi: 10.1139/o75-056. [DOI] [PubMed] [Google Scholar]
  9. Koj A., Dubin A., Kasperczyk H., Bereta J., Gordon A. H. Changes in the blood level and affinity to concanavalin A of rat plasma glycoproteins during acute inflammation and hepatoma growth. Biochem J. 1982 Sep 15;206(3):545–553. doi: 10.1042/bj2060545. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Limãos E. A., Borges D. R., Souza-Pinto J. C., Gordon A. H., Prado J. L. Acute turpentine inflammation and kinin release in rat-paw thermic oedema. Br J Exp Pathol. 1981 Dec;62(6):591–594. [PMC free article] [PubMed] [Google Scholar]
  11. Lombart C., Sturgess J., Schachter H. The effect of turpentine-induced inflammation on rat liver glycosyltransferases and Golgi complex ultrastructure. Biochim Biophys Acta. 1980 Apr 17;629(1):1–12. doi: 10.1016/0304-4165(80)90259-7. [DOI] [PubMed] [Google Scholar]
  12. Mueckler M. M., Pitot H. C. Structure and function of rat liver polysome populations. I. Complexity, frequency distribution, and degree of uniqueness of free and membrane-bound polysomal polyadenylate-containing RNA populations. J Cell Biol. 1981 Aug;90(2):495–506. doi: 10.1083/jcb.90.2.495. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Peters T., Jr, Peters J. C. The biosynthesis of rat serum albumin. VI. Intracellular transport of albumin and rates of albumin and liver protein synthesis in vivo under various physiological conditions. J Biol Chem. 1972 Jun 25;247(12):3858–3863. [PubMed] [Google Scholar]
  14. Ragnotti G., Cajone F., Bernelli-Zazzera A. Structural and functional changes in polysomes from ischemic livers. Exp Mol Pathol. 1970 Dec;13(3):295–306. doi: 10.1016/0014-4800(70)90092-4. [DOI] [PubMed] [Google Scholar]
  15. Ramsey J. C., Steele W. J. Effect of starvation of the distribution of free and membrane-bound ribosomes in rat liver and on the content of phospholipid and glycogen in purified ribosomes. Biochim Biophys Acta. 1976 Oct 18;447(3):312–318. doi: 10.1016/0005-2787(76)90054-x. [DOI] [PubMed] [Google Scholar]
  16. Ricca G. A., Hamilton R. W., McLean J. W., Conn A., Kalinyak J. E., Taylor J. M. Rat alpha 1-acid glycoprotein mRNA. Cloning of double-stranded cDNA and kinetics of induction of mRNA levels following acute inflammation. J Biol Chem. 1981 Oct 25;256(20):10362–10368. [PubMed] [Google Scholar]
  17. Rupp R. G., Fuller G. M. Comparison of albumin and fibrinogen biosynthesis in stimulated rats and cultured fetal rat hepatocytes. Biochem Biophys Res Commun. 1979 May 14;88(1):327–334. doi: 10.1016/0006-291x(79)91733-9. [DOI] [PubMed] [Google Scholar]
  18. Schiaffonati L., Cairo G., Bernelli-Zazzera A. RNA synthesis by nuclei and nucleoli from ischemic liver cells. J Cell Physiol. 1978 Dec;97(3 Pt 2 Suppl 1):487–496. doi: 10.1002/jcp.1040970324. [DOI] [PubMed] [Google Scholar]
  19. Schreiber G., Howlett G., Nagashima M., Millership A., Martin H., Urban J., Kotler L. The acute phase response of plasma protein synthesis during experimental inflammation. J Biol Chem. 1982 Sep 10;257(17):10271–10277. [PubMed] [Google Scholar]
  20. Ward W. F., Mortimore G. E. Compartmentation of intracellular amino acids in rat liver. Evidence for an intralysosomal pool derived from protein degradation. J Biol Chem. 1978 May 25;253(10):3581–3587. [PubMed] [Google Scholar]
  21. Wolf S., Sameshima M., Liebhaber S. A., Schlessinger D. Regulation of ribosomal ribonucleic acid levels in growing, 3H-arrested, and crisis-phase WI-38 human diploid fibroblasts. Biochemistry. 1980 Jul 22;19(15):3484–3490. doi: 10.1021/bi00556a012. [DOI] [PubMed] [Google Scholar]
  22. Yap S. H., Strair R. K., Shafritz D. A. Distribution of rat liver albumin mRNA membrane-bound and free in polyribosomes as determined by molecular hybridization. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5397–5401. doi: 10.1073/pnas.74.12.5397. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Yap S. H., Strair R. K., Shafritz D. A. Effect of a short term fast on the distribution of cytoplasmic albumin messenger ribonucleic acid in rat liver. Evidence for formation of free albumin messenger ribonucleoprotein particles. J Biol Chem. 1978 Jul 25;253(14):4944–4950. [PubMed] [Google Scholar]

Articles from British journal of experimental pathology are provided here courtesy of Wiley

RESOURCES