Abstract
Metabolically stable consortia of anaerobic bacteria obtained by enrichment of sediment samples with 3,4,5-trimethoxybenzoate (TMBA), 3,4,5-trihydroxybenzoate (gallate [GA]), or 5-chlorovanillin (CV) were used to study the anaerobic transformation of a series of chloroveratroles, chloroguaiacols, and chlorocatechols used as cosubstrates. Experiments were carried out with growing cultures, and the following pathways were demonstrated for metabolism of the growth substrates: (i) TMBA produced GA, which was further degraded without the formation of aromatic intermediates; (ii) GA formed pyrogallol, which was stable to further transformation; and (iii) CV was degraded by a series of steps involving de-O-methylation, oxidation of the aldehyde group, and decarboxylation to 3-chlorocatechol before ring cleavage. Mono-de-O-methylation of the cosubstrates occurred rapidly in the order 4,5,6-trichloroguaiacol greater than 3,4,5-trichloroguaiacol approximately 3,4,5-trichloroveratrole approximately tetrachloroveratrole greater than tetrachloroguaiacol and was concomitant with degradation of the growth substrates. For the polymethoxy compounds--chloroveratroles, 1,2,3-trichloro-4,5,6-trimethoxybenzene, and 4,5,6-trichlorosyringol--de-O-methylation took place sequentially. The resulting chlorocatechols were stable to further transformation until the cultures had exhausted the growth substrates; selective dechlorination then occurred with the formation of 3,5-dichlorocatechol from 3,4,5-trichlorocatechol and of 3,4,6-trichlorocatechol from tetrachlorocatechol. 2,4,5-, 2,4,6-, and 3,4,5-trichoroanisole and 2,3,4,5-tetrachloroanisole were de-O-methylated, but the resulting chlorophenols were resistant to dechlorination. These results extend those of a previous study with spiked sediment samples and their endogenous microflora and illustrate some of the transformations of chloroguaiacols and chlorocatechols which may be expected to occur in anaerobic sediments.
Full text
PDF








Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Allard A. S., Remberger M., Neilson A. H. Bacterial o-methylation of chloroguaiacols: effect of substrate concentration, cell density, and growth conditions. Appl Environ Microbiol. 1985 Feb;49(2):279–288. doi: 10.1128/aem.49.2.279-288.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bernhardt F. H., Nastainczyk W., Seydewitz V. Kinetic studies on a 4-methoxybenzoate O-demethylase from Pseudomonas putida. Eur J Biochem. 1977 Jan 3;72(1):107–115. doi: 10.1111/j.1432-1033.1977.tb11230.x. [DOI] [PubMed] [Google Scholar]
- Boyd S. A., Shelton D. R. Anaerobic biodegradation of chlorophenols in fresh and acclimated sludge. Appl Environ Microbiol. 1984 Feb;47(2):272–277. doi: 10.1128/aem.47.2.272-277.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cartwright N. J., Holdom K. S., Broadbent D. A. Bacterial attack on phenolic ethers. Dealkylation of higher ethers and further observations on O-demethylases. Microbios. 1971 Mar;3(10):113–130. [PubMed] [Google Scholar]
- Cartwright N. J., Smith A. R. Bacterial attack on phenolic ethers: An enzyme system demethylating vanillic acid. Biochem J. 1967 Mar;102(3):826–841. doi: 10.1042/bj1020826. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chen W., Ohmiya K., Shimizu S., Kawakami H. Degradation of dehydrodivanillin by anaerobic bacteria from cow rumen fluid. Appl Environ Microbiol. 1985 Jan;49(1):211–216. doi: 10.1128/aem.49.1.211-216.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chen W., Supanwong K., Ohmiya K., Shimizu S., Kawakami H. Anaerobic degradation of veratrylglycerol-beta-guaiacyl ether and guaiacoxyacetic acid by mixed rumen bacteria. Appl Environ Microbiol. 1985 Dec;50(6):1451–1456. doi: 10.1128/aem.50.6.1451-1456.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Crawford R. L., McCoy E., Harkin J. M., Kirk T. K., Obst J. R. Degradation of methoxylated benzoic acids by a Nocardia from a lignin-rich environment: significance to lignin degradation and effect of chloro substituents. Appl Microbiol. 1973 Aug;26(2):176–184. doi: 10.1128/am.26.2.176-184.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Evans W. C., Smith B. S., Fernley H. N., Davies J. I. Bacterial metabolism of 2,4-dichlorophenoxyacetate. Biochem J. 1971 May;122(4):543–551. doi: 10.1042/bj1220543. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Frazer A. C., Young L. Y. A gram-negative anaerobic bacterium that utilizes o-methyl substituents of aromatic acids. Appl Environ Microbiol. 1985 May;49(5):1345–1347. doi: 10.1128/aem.49.5.1345-1347.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Frazer A. C., Young L. Y. Anaerobic c(1) metabolism of the o-methyl-C-labeled substituent of vanillate. Appl Environ Microbiol. 1986 Jan;51(1):84–87. doi: 10.1128/aem.51.1.84-87.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gibson S. A., Suflita J. M. Extrapolation of biodegradation results to groundwater aquifers: reductive dehalogenation of aromatic compounds. Appl Environ Microbiol. 1986 Oct;52(4):681–688. doi: 10.1128/aem.52.4.681-688.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Grbić-Galić D. Anaerobic degradation of coniferyl alcohol by methanogenic consortia. Appl Environ Microbiol. 1983 Dec;46(6):1442–1446. doi: 10.1128/aem.46.6.1442-1446.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Grbić-Galić D., Young L. Y. Methane fermentation of ferulate and benzoate: anaerobic degradation pathways. Appl Environ Microbiol. 1985 Aug;50(2):292–297. doi: 10.1128/aem.50.2.292-297.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Healy J. B., Young L. Y. Anaerobic biodegradation of eleven aromatic compounds to methane. Appl Environ Microbiol. 1979 Jul;38(1):84–89. doi: 10.1128/aem.38.1.84-89.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Healy J. B., Young L. Y., Reinhard M. Methanogenic decomposition of ferulic Acid, a model lignin derivative. Appl Environ Microbiol. 1980 Feb;39(2):436–444. doi: 10.1128/aem.39.2.436-444.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Horowitz A., Suflita J. M., Tiedje J. M. Reductive dehalogenations of halobenzoates by anaerobic lake sediment microorganisms. Appl Environ Microbiol. 1983 May;45(5):1459–1465. doi: 10.1128/aem.45.5.1459-1465.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Magee C. M., Rodeheaver G., Edgerton M. T., Edlich R. F. A more reliable gram staining technic for diagnosis of surgical infections. Am J Surg. 1975 Sep;130(3):341–346. doi: 10.1016/0002-9610(75)90398-0. [DOI] [PubMed] [Google Scholar]
- Mikesell M. D., Boyd S. A. Complete reductive dechlorination and mineralization of pentachlorophenol by anaerobic microorganisms. Appl Environ Microbiol. 1986 Oct;52(4):861–865. doi: 10.1128/aem.52.4.861-865.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Neilson A. H., Allard A. S., Hynning P. A., Remberger M., Landner L. Bacterial methylation of chlorinated phenols and guaiacols: formation of veratroles from guaiacols and high-molecular-weight chlorinated lignin. Appl Environ Microbiol. 1983 Mar;45(3):774–783. doi: 10.1128/aem.45.3.774-783.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pometto A. L., 3rd, Sutherland J. B., Crawford D. L. Streptomyces setonii: catabolism of vanillic acid via guaiacol and catechol. Can J Microbiol. 1981 Jun;27(6):636–638. doi: 10.1139/m81-097. [DOI] [PubMed] [Google Scholar]
- Remberger M., Allard A. S., Neilson A. H. Biotransformations of chloroguaiacols, chlorocatechols, and chloroveratroles in sediments. Appl Environ Microbiol. 1986 Mar;51(3):552–558. doi: 10.1128/aem.51.3.552-558.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shelton D. R., Tiedje J. M. Isolation and partial characterization of bacteria in an anaerobic consortium that mineralizes 3-chlorobenzoic Acid. Appl Environ Microbiol. 1984 Oct;48(4):840–848. doi: 10.1128/aem.48.4.840-848.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sutherland J. B. Demethylation of Veratrole by Cytochrome P-450 in Streptomyces setonii. Appl Environ Microbiol. 1986 Jul;52(1):98–100. doi: 10.1128/aem.52.1.98-100.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
