Skip to main content
British Journal of Experimental Pathology logoLink to British Journal of Experimental Pathology
. 1979 Dec;60(6):632–641.

Non-destructive measurement of metabolites and tissue pH in the kidney by 31P nuclear magnetic resonance.

P A Sehr, P J Bore, J Papatheofanis, G K Radda
PMCID: PMC2041570  PMID: 44201

Abstract

Phosphorus nuclear magnetic resonance (31P NMR) can be used as a non-destructive method for the simultaneous observation of the major phosphate-containing metabolites (ATP, ADP, nucleotide monophosphate, Pi, sugar phosphate) and intracellular pH in isolated rat kidney. The time course of changes in these metabolites and in cellular pH in the ischaemic kidney are examined at two temperatures and in the presence of different flushing media. ATP is rapidly depleted while the pH change is slower and shows biphasic behaviour. Pi production and total nucleotide (ATP and ADP) depletion also occur on the same time-scale as the tissue acidification. The relation of these observations to tissue viability is discussed and the possibility of extending the measurements to human organs is considered.

Full text

PDF
632

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abbott W. M. Viability assays as applied to the cryopreservation of hearts and kidneys. Cryobiology. 1969 May-Jun;5(6):454–462. doi: 10.1016/s0011-2240(69)80112-4. [DOI] [PubMed] [Google Scholar]
  2. Baxby K., Taylor R. M., Anderson M., Johnson R. W., Swinney J. Assessment of cadaveric kidneys for transplantation. Lancet. 1974 Oct 26;2(7887):977–979. doi: 10.1016/s0140-6736(74)92072-8. [DOI] [PubMed] [Google Scholar]
  3. Bore P. J., Papatheofanis I., Sells R. A. Adenosine triphosphate regeneration and function in the rat kidney following warm ischaemia. Transplantation. 1979 Apr;27(4):235–237. doi: 10.1097/00007890-197904000-00005. [DOI] [PubMed] [Google Scholar]
  4. Buhl M. R., Jörgensen S. Breakdown of 5'-adenine nucleotides in ischaemic renal cortex estimated by oxypurine excretion during perfusion. Scand J Clin Lab Invest. 1975 May;35(3):211–217. doi: 10.1080/00365517509095732. [DOI] [PubMed] [Google Scholar]
  5. Buhl M. R., Kemp G., Kemp E. Hypoxanthine excretion during preservation of rabbit kidneys for transplantation. An assessment of the ischaemic damage. Transplantation. 1976 Jun;21(6):460–467. doi: 10.1097/00007890-197606000-00004. [DOI] [PubMed] [Google Scholar]
  6. Burt C. T., Glonek T., Bárány M. Phosphorus-31 nuclear magnetic resonance detection of unexpected phosphodiesters in muscle. Biochemistry. 1976 Nov 2;15(22):4850–4853. doi: 10.1021/bi00667a015. [DOI] [PubMed] [Google Scholar]
  7. Busby S. J., Gadian D. G., Radda G. K., Richards R. E., Seeley P. J. Phosphorus nuclear-magnetic-resonance studies of compartmentation in muscle. Biochem J. 1978 Jan 15;170(1):103–114. doi: 10.1042/bj1700103. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Chance B., Nakase Y., Bond M., Leigh J. S., Jr, McDonald G. Detection of 31P nuclear magnetic resonance signals in brain by in vivo and freeze-trapped assays. Proc Natl Acad Sci U S A. 1978 Oct;75(10):4925–4929. doi: 10.1073/pnas.75.10.4925. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Cohen R. D., Iles R. A. Intracellular pH: measurement, control, and metabolic interrelationships. CRC Crit Rev Clin Lab Sci. 1975 Sep;6(2):101–143. doi: 10.3109/10408367509151567. [DOI] [PubMed] [Google Scholar]
  10. Collins G. M., Taft P., Green R. D., Ruprecht R., Halasz N. A. Adenine nucleotide levels in preserved and ischemically injured canine kidneys. World J Surg. 1977 Mar;2(1):237–243. doi: 10.1007/BF01665093. [DOI] [PubMed] [Google Scholar]
  11. Dawson M. J., Gadian D. G., Wilkie D. R. Contraction and recovery of living muscles studies by 31P nuclear magnetic resonance. J Physiol. 1977 Jun;267(3):703–735. doi: 10.1113/jphysiol.1977.sp011835. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. GERLACH E., BADER W., SCHWOERER W. [On the metabolism of acid-soluble phosphorus compounds in rat kidney. Stable concentrations in the total kidney and renal cortex and its changes due to tissue excision, ischemia and asphyxia]. Pflugers Arch Gesamte Physiol Menschen Tiere. 1961;272:407–433. [PubMed] [Google Scholar]
  13. Gadian D. G., Hoult D. I., Radda G. K., Seeley P. J., Chance B., Barlow C. Phosphorus nuclear magnetic resonance studies on normoxic and ischemic cardiac tissue. Proc Natl Acad Sci U S A. 1976 Dec;73(12):4446–4448. doi: 10.1073/pnas.73.12.4446. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Garlick P. B., Radda G. K., Seeley P. J. Phosphorus NMR studies on perfused heart. Biochem Biophys Res Commun. 1977 Feb 7;74(3):1256–1262. doi: 10.1016/0006-291x(77)91653-9. [DOI] [PubMed] [Google Scholar]
  15. Garlick P. B., Radda G. K., Seeley P. J. Studies of acidosis in the ischaemic heart by phosphorus nuclear magnetic resonance. Biochem J. 1979 Dec 15;184(3):547–554. doi: 10.1042/bj1840547. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Grenier J. F., Dauchel J., Jaeck D., Kachelhoffer J., Stock C. Comparison of two electrolyte solutions for short perfusion and hypothermic storage in experimental renal preservation. Br J Surg. 1973 Dec;60(12):964–968. doi: 10.1002/bjs.1800601213. [DOI] [PubMed] [Google Scholar]
  17. Hems D. A., Brosnan J. T. Effects of ischaemia on content of metabolites in rat liver and kidney in vivo. Biochem J. 1970 Nov;120(1):105–111. doi: 10.1042/bj1200105. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Hoult D. I., Busby S. J., Gadian D. G., Radda G. K., Richards R. E., Seeley P. J. Observation of tissue metabolites using 31P nuclear magnetic resonance. Nature. 1974 Nov 22;252(5481):285–287. doi: 10.1038/252285a0. [DOI] [PubMed] [Google Scholar]
  19. Jacobus W. E., Taylor G. J., 4th, Hollis D. P., Nunnally R. L. Phosphorus nuclear magnetic resonance of perfused working rat hearts. Nature. 1977 Feb 24;265(5596):756–758. doi: 10.1038/265756a0. [DOI] [PubMed] [Google Scholar]
  20. Lannon S. G., Bickis I., Dossetor J. B. Viability testing of kidneys for transplantation. Invest Urol. 1971 Nov;9(3):180–183. [PubMed] [Google Scholar]
  21. Moon R. B., Richards J. H. Determination of intracellular pH by 31P magnetic resonance. J Biol Chem. 1973 Oct 25;248(20):7276–7278. [PubMed] [Google Scholar]
  22. Seeley P. J., Busby S. J., Gadian D. G., Radda G. K., Richards R. E. A new approach to metabolite compartmentation in muscle. Biochem Soc Trans. 1976;4(1):62–64. doi: 10.1042/bst0040062. [DOI] [PubMed] [Google Scholar]
  23. Sehr P. A., Radda G. K. A model kidney transplant studied by phosphorus nuclear magnetic resonance. Biochem Biophys Res Commun. 1977 Jul 11;77(1):195–202. doi: 10.1016/s0006-291x(77)80182-4. [DOI] [PubMed] [Google Scholar]
  24. Sells R. A., Bore P. J., McLaughlin G. A., Johnson J. N., Tyrrell I. A predictive test of renal viability. Transplant Proc. 1977 Sep;9(3):1557–1560. [PubMed] [Google Scholar]
  25. Vogt M. T., Farber E. On the molecular pathology of ischemic renal cell death. Reversible and irreversible cellular and mitochondrial metabolic alterations. Am J Pathol. 1968 Jul;53(1):1–26. [PMC free article] [PubMed] [Google Scholar]

Articles from British journal of experimental pathology are provided here courtesy of Wiley

RESOURCES